BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 18982998)

  • 1. Technology for remediation and disposal of arsenic.
    Visoottiviseth P; Ahmed F
    Rev Environ Contam Toxicol; 2008; 197():77-128. PubMed ID: 18982998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Case reports: arsenic pollution in Thailand, Bangladesh, and Hungary.
    Jones H; Visoottiviseth P; Bux MK; Födényi R; Kováts N; Borbély G; Galbács Z
    Rev Environ Contam Toxicol; 2008; 197():163-87. PubMed ID: 18983000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removing arsenic from groundwater in Cambodia using high performance iron adsorbent.
    Kang Y; Takeda R; Nada A; Thavarith L; Tang S; Nuki K; Sakurai K
    Environ Monit Assess; 2014 Sep; 186(9):5605-16. PubMed ID: 24894910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sustainable engineered processes to mitigate the global arsenic crisis in drinking water: challenges and progress.
    Sarkar S; Greenleaf JE; Gupta A; Uy D; Sengupta AK
    Annu Rev Chem Biomol Eng; 2012; 3():497-517. PubMed ID: 22541048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perspectives of low cost arsenic remediation of drinking water in Pakistan and other countries.
    Malik AH; Khan ZM; Mahmood Q; Nasreen S; Bhatti ZA
    J Hazard Mater; 2009 Aug; 168(1):1-12. PubMed ID: 19278777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic remediation of drinking water using iron-oxide coated coal bottom ash.
    Mathieu JL; Gadgil AJ; Addy SE; Kowolik K
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Sep; 45(11):1446-60. PubMed ID: 20694883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal.
    Jadhav SV; Bringas E; Yadav GD; Rathod VK; Ortiz I; Marathe KV
    J Environ Manage; 2015 Oct; 162():306-25. PubMed ID: 26265600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ treatment of arsenic contaminated groundwater by aquifer iron coating: Experimental study.
    Xie X; Wang Y; Pi K; Liu C; Li J; Liu Y; Wang Z; Duan M
    Sci Total Environ; 2015 Sep; 527-528():38-46. PubMed ID: 25956146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron-based subsurface arsenic removal technologies by aeration: A review of the current state and future prospects.
    Luong VT; Cañas Kurz EE; Hellriegel U; Luu TL; Hoinkis J; Bundschuh J
    Water Res; 2018 Apr; 133():110-122. PubMed ID: 29367047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cost-benefit calculation of phytoremediation technology for heavy-metal-contaminated soil.
    Wan X; Lei M; Chen T
    Sci Total Environ; 2016 Sep; 563-564():796-802. PubMed ID: 26765508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective removal of arsenic and monovalent ions from brackish water reverse osmosis concentrate.
    Xu P; Capito M; Cath TY
    J Hazard Mater; 2013 Sep; 260():885-91. PubMed ID: 23892312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The fate of arsenic in soil-plant systems.
    Moreno-Jiménez E; Esteban E; Peñalosa JM
    Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Opportunities for Phytoremediation and Bioindication of Arsenic Contaminated Water Using a Submerged Aquatic Plant:Vallisneria natans (lour.) Hara.
    Chen G; Liu X; Brookes PC; Xu J
    Int J Phytoremediation; 2015; 17(1-6):249-55. PubMed ID: 25397983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The global menace of arsenic and its conventional remediation - A critical review.
    Sarkar A; Paul B
    Chemosphere; 2016 Sep; 158():37-49. PubMed ID: 27239969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remediation of inorganic arsenic in groundwater for safe water supply: a critical assessment of technological solutions.
    Mondal P; Bhowmick S; Chatterjee D; Figoli A; Van der Bruggen B
    Chemosphere; 2013 Jun; 92(2):157-70. PubMed ID: 23466274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water-supply options in arsenic-affected regions in Cambodia: targeting the bottom income quintiles.
    Chamberlain JF; Sabatini DA
    Sci Total Environ; 2014 Aug; 488-489():521-31. PubMed ID: 24457133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laboratory based approaches for arsenic remediation from contaminated water: recent developments.
    Mondal P; Majumder CB; Mohanty B
    J Hazard Mater; 2006 Sep; 137(1):464-79. PubMed ID: 16616812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Groundwater arsenic contamination in Bangladesh-21 Years of research.
    Chakraborti D; Rahman MM; Mukherjee A; Alauddin M; Hassan M; Dutta RN; Pati S; Mukherjee SC; Roy S; Quamruzzman Q; Rahman M; Morshed S; Islam T; Sorif S; Selim M; Islam MR; Hossain MM
    J Trace Elem Med Biol; 2015; 31():237-48. PubMed ID: 25660323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plants against the global epidemic of arsenic poisoning.
    Alkorta I; Hernández-Allica J; Garbisu C
    Environ Int; 2004 Sep; 30(7):949-51. PubMed ID: 15196843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxicological and chemical assessment of arsenic-contaminated groundwater after electrochemical and advanced oxidation treatments.
    Radić S; Crnojević H; Vujčić V; Gajski G; Gerić M; Cvetković Ž; Petra C; Garaj-Vrhovac V; Oreščanin V
    Sci Total Environ; 2016 Feb; 543(Pt A):147-154. PubMed ID: 26580737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.