BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 18983143)

  • 1. Practical outcomes of applying ensemble machine learning classifiers to High-Throughput Screening (HTS) data analysis and screening.
    Simmons K; Kinney J; Owens A; Kleier DA; Bloch K; Argentar D; Walsh A; Vaidyanathan G
    J Chem Inf Model; 2008 Nov; 48(11):2196-206. PubMed ID: 18983143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative study of machine-learning and chemometric tools for analysis of in-vivo high-throughput screening data.
    Simmons K; Kinney J; Owens A; Kleier D; Bloch K; Argentar D; Walsh A; Vaidyanathan G
    J Chem Inf Model; 2008 Aug; 48(8):1663-8. PubMed ID: 18681397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel statistical approach for primary high-throughput screening hit selection.
    Yan SF; Asatryan H; Li J; Zhou Y
    J Chem Inf Model; 2005; 45(6):1784-90. PubMed ID: 16309285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel trends in high-throughput screening.
    Mayr LM; Bojanic D
    Curr Opin Pharmacol; 2009 Oct; 9(5):580-8. PubMed ID: 19775937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying actives from HTS data sets: practical approaches for the selection of an appropriate HTS data-processing method and quality control review.
    Shun TY; Lazo JS; Sharlow ER; Johnston PA
    J Biomol Screen; 2011 Jan; 16(1):1-14. PubMed ID: 21160066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning in sedimentation modelling.
    Bhattacharya B; Solomatine DP
    Neural Netw; 2006 Mar; 19(2):208-14. PubMed ID: 16530383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting human liver microsomal stability with machine learning techniques.
    Sakiyama Y; Yuki H; Moriya T; Hattori K; Suzuki M; Shimada K; Honma T
    J Mol Graph Model; 2008 Feb; 26(6):907-15. PubMed ID: 17683964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning models for lipophilicity and their domain of applicability.
    Schroeter T; Schwaighofer A; Mika S; Laak AT; Suelzle D; Ganzer U; Heinrich N; Müller KR
    Mol Pharm; 2007; 4(4):524-38. PubMed ID: 17637064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selection and combination of machine learning classifiers for prediction of linear B-cell epitopes on proteins.
    Söllner J
    J Mol Recognit; 2006; 19(3):209-14. PubMed ID: 16602136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning in soil classification.
    Bhattacharya B; Solomatine DP
    Neural Netw; 2006 Mar; 19(2):186-95. PubMed ID: 16530382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contemporary QSAR classifiers compared.
    Bruce CL; Melville JL; Pickett SD; Hirst JD
    J Chem Inf Model; 2007; 47(1):219-27. PubMed ID: 17238267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GPU accelerated support vector machines for mining high-throughput screening data.
    Liao Q; Wang J; Webster Y; Watson IA
    J Chem Inf Model; 2009 Dec; 49(12):2718-25. PubMed ID: 19961205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supervised learning with decision tree-based methods in computational and systems biology.
    Geurts P; Irrthum A; Wehenkel L
    Mol Biosyst; 2009 Dec; 5(12):1593-605. PubMed ID: 20023720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemogenomic analysis of safety profiling data.
    Scheiber J; Jenkins JL
    Methods Mol Biol; 2009; 575():207-23. PubMed ID: 19727617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of diversity-based, high-throughput screening on drug discovery: "chance favours the prepared mind".
    Snowden M; Green DV
    Curr Opin Drug Discov Devel; 2008 Jul; 11(4):553-8. PubMed ID: 18600571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targets looking for drugs: a multistep computational protocol for the development of structure-based pharmacophores and their applications for hit discovery.
    Tintori C; Corradi V; Magnani M; Manetti F; Botta M
    J Chem Inf Model; 2008 Nov; 48(11):2166-79. PubMed ID: 18942779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification of highly unbalanced CYP450 data of drugs using cost sensitive machine learning techniques.
    Eitrich T; Kless A; Druska C; Meyer W; Grotendorst J
    J Chem Inf Model; 2007; 47(1):92-103. PubMed ID: 17238253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of antibacterial compounds by machine learning approaches.
    Yang XG; Chen D; Wang M; Xue Y; Chen YZ
    J Comput Chem; 2009 Jun; 30(8):1202-11. PubMed ID: 18988254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of recursion forests in the sequential screening process: consensus selection by multiple recursion trees.
    van Rhee AM
    J Chem Inf Comput Sci; 2003; 43(3):941-8. PubMed ID: 12767153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ranking chemical structures for drug discovery: a new machine learning approach.
    Agarwal S; Dugar D; Sengupta S
    J Chem Inf Model; 2010 May; 50(5):716-31. PubMed ID: 20387860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.