BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 1898385)

  • 1. Modification of the N-terminus of membrane fusion-active peptides blocks the fusion activity.
    Murata M; Kagiwada S; Hishida R; Ishiguro R; Ohnishi S; Takahashi S
    Biochem Biophys Res Commun; 1991 Sep; 179(2):1050-5. PubMed ID: 1898385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specificity of amphiphilic anionic peptides for fusion of phospholipid vesicles.
    Murata M; Takahashi S; Shirai Y; Kagiwada S; Hishida R; Ohnishi S
    Biophys J; 1993 Mar; 64(3):724-34. PubMed ID: 8471724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH-dependent membrane fusion and vesiculation of phospholipid large unilamellar vesicles induced by amphiphilic anionic and cationic peptides.
    Murata M; Takahashi S; Kagiwada S; Suzuki A; Ohnishi S
    Biochemistry; 1992 Feb; 31(7):1986-92. PubMed ID: 1536841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformation of membrane fusion-active 20-residue peptides with or without lipid bilayers. Implication of alpha-helix formation for membrane fusion.
    Takahashi S
    Biochemistry; 1990 Jul; 29(26):6257-64. PubMed ID: 2207071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane fusion activity of the influenza virus hemagglutinin: interaction of HA2 N-terminal peptides with phospholipid vesicles.
    Rafalski M; Ortiz A; Rockwell A; van Ginkel LC; Lear JD; DeGrado WF; Wilschut J
    Biochemistry; 1991 Oct; 30(42):10211-20. PubMed ID: 1931950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane fusion induced by mutual interaction of the two charge-reversed amphiphilic peptides at neutral pH.
    Murata M; Kagiwada S; Takahashi S; Ohnishi S
    J Biol Chem; 1991 Aug; 266(22):14353-8. PubMed ID: 1860844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH-dependent membrane fusion activity of a synthetic twenty amino acid peptide with the same sequence as that of the hydrophobic segment of influenza virus hemagglutinin.
    Murata M; Sugahara Y; Takahashi S; Ohnishi S
    J Biochem; 1987 Oct; 102(4):957-62. PubMed ID: 3436962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane destabilization by N-terminal peptides of viral envelope proteins.
    Düzgüneş N; Shavnin SA
    J Membr Biol; 1992 May; 128(1):71-80. PubMed ID: 1323686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the N-terminal glycine on the secondary structure, orientation, and interaction of the influenza hemagglutinin fusion peptide with lipid bilayers.
    Gray C; Tatulian SA; Wharton SA; Tamm LK
    Biophys J; 1996 May; 70(5):2275-86. PubMed ID: 9172751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The interaction of synthetic analogs of the N-terminal fusion sequence of influenza virus with a lipid monolayer. Comparison of fusion-active and fusion-defective analogs.
    Burger KN; Wharton SA; Demel RA; Verkleij AJ
    Biochim Biophys Acta; 1991 Jun; 1065(2):121-9. PubMed ID: 2059647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane binding and conformational properties of peptides representing the NH2 terminus of influenza HA-2.
    Lear JD; DeGrado WF
    J Biol Chem; 1987 May; 262(14):6500-5. PubMed ID: 3571268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane destabilizing activity of influenza virus hemagglutinin-based synthetic peptide: implications of critical glycine residue in fusion peptide.
    Matsumoto T
    Biophys Chem; 1999 Jun; 79(2):153-62. PubMed ID: 10389239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of influenza virus hemagglutinin with a lipid monolayer. A comparison of the surface activities of intact virions, isolated hemagglutinins, and a synthetic fusion peptide.
    Burger KN; Wharton SA; Demel RA; Verkleij AJ
    Biochemistry; 1991 Nov; 30(46):11173-80. PubMed ID: 1932037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fusion of dioleoylphosphatidylcholine vesicles induced by an amphiphilic cationic peptide and oligophosphates at neutral pH.
    Murata M; Shirai Y; Ishiguro R; Kagiwada S; Tahara Y; Ohnishi S; Takahashi S
    Biochim Biophys Acta; 1993 Oct; 1152(1):99-108. PubMed ID: 8399311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane action of synthetic N-terminal peptides of influenza virus hemagglutinin and its mutants.
    Düzgüneş N; Gambale F
    FEBS Lett; 1988 Jan; 227(2):110-4. PubMed ID: 3338569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microscopic observations reveal that fusogenic peptides induce liposome shrinkage prior to membrane fusion.
    Nomura F; Inaba T; Ishikawa S; Nagata M; Takahashi S; Hotani H; Takiguchi K
    Proc Natl Acad Sci U S A; 2004 Mar; 101(10):3420-5. PubMed ID: 14988507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of acidic residues in the "fusion segment" of influenza A virus hemagglutinin in low-pH-dependent membrane fusion.
    Nobusawa E; Hishida R; Murata M; Kawasaki K; Ohnishi S; Nakajima K
    Arch Virol; 1995; 140(5):865-75. PubMed ID: 7605199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane binding of pH-sensitive influenza fusion peptides. positioning, configuration, and induced leakage in a lipid vesicle model.
    Esbjörner EK; Oglecka K; Lincoln P; Gräslund A; Nordén B
    Biochemistry; 2007 Nov; 46(47):13490-504. PubMed ID: 17973492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insertion of a coiled-coil peptide from influenza virus hemagglutinin into membranes.
    Yu YG; King DS; Shin YK
    Science; 1994 Oct; 266(5183):274-6. PubMed ID: 7939662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sendai virus internal fusion peptide: structural and functional characterization and a plausible mode of viral entry inhibition.
    Ghosh JK; Peisajovich SG; Shai Y
    Biochemistry; 2000 Sep; 39(38):11581-92. PubMed ID: 10995225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.