BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 18983989)

  • 1. Chinese hamster monomeric carbonyl reductases of the short-chain dehydrogenase/reductase superfamily.
    Miura T; Nishinaka T; Takama M; Murakami M; Terada T
    Chem Biol Interact; 2009 Mar; 178(1-3):110-6. PubMed ID: 18983989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of multiple Chinese hamster carbonyl reductases.
    Terada T; Sugihara Y; Nakamura K; Sato R; Sakuma S; Fujimoto Y; Fujita T; Inazu N; Maeda M
    Chem Biol Interact; 2001 Jan; 130-132(1-3):847-61. PubMed ID: 11306100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the role of the amino acid residue at position 230 for catalysis in monomeric carbonyl reductase 3.
    Miura T; Itoh Y; Takada M; Tsutsui H; Yukimura T; Nishinaka T; Terada T
    Chem Biol Interact; 2009 Mar; 178(1-3):211-4. PubMed ID: 18983987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of the substrate-binding site of human carbonyl reductases CBR1 and CBR3 by site-directed mutagenesis.
    El-Hawari Y; Favia AD; Pilka ES; Kisiela M; Oppermann U; Martin HJ; Maser E
    Chem Biol Interact; 2009 Mar; 178(1-3):234-41. PubMed ID: 19061875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monkey 3-deoxyglucosone reductase: tissue distribution and purification of three multiple forms of the kidney enzyme that are identical with dihydrodiol dehydrogenase, aldehyde reductase, and aldose reductase.
    Sato K; Inazu A; Yamaguchi S; Nakayama T; Deyashiki Y; Sawada H; Hara A
    Arch Biochem Biophys; 1993 Dec; 307(2):286-94. PubMed ID: 8274014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Importance of the substrate-binding loop region of human monomeric carbonyl reductases in catalysis and coenzyme binding.
    Miura T; Nishinaka T; Terada T
    Life Sci; 2009 Aug; 85(7-8):303-8. PubMed ID: 19555696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Further characterization of Chinese hamster carbonyl reductases (CHCRs).
    Terada T; Sugihara Y; Nakamura K; Mizobuchi H; Maeda M
    Chem Biol Interact; 2003 Feb; 143-144():373-81. PubMed ID: 12604224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and characterization of NAD-dependent morphine 6-dehydrogenase from hamster liver cytosol, a new member of the aldo-keto reductase superfamily.
    Todaka T; Yamano S; Toki S
    Arch Biochem Biophys; 2000 Feb; 374(2):189-97. PubMed ID: 10666297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a functional antioxidant responsive element in the promoter of the Chinese hamster carbonyl reductase 3 (Chcr3) gene.
    Miura T; Taketomi A; Nakabayashi T; Nishinaka T; Terada T
    Cell Biol Int; 2015 Jul; 39(7):808-15. PubMed ID: 25677373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbonyl reductase 1 is a predominant doxorubicin reductase in the human liver.
    Kassner N; Huse K; Martin HJ; Gödtel-Armbrust U; Metzger A; Meineke I; Brockmöller J; Klein K; Zanger UM; Maser E; Wojnowski L
    Drug Metab Dispos; 2008 Oct; 36(10):2113-20. PubMed ID: 18635746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partial purification and characterization of a new human membrane-bound carbonyl reductase playing a role in the deactivation of the anticancer drug oracin.
    Skarydová L; Skarka A; Novotná R; Zivná L; Martin HJ; Wsól V; Maser E
    Toxicology; 2009 Oct; 264(1-2):52-60. PubMed ID: 19635524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of human carbonyl reductase 1 (CBR1, SDR21C1) gene by transcription factor Nrf2.
    Miura T; Taketomi A; Nishinaka T; Terada T
    Chem Biol Interact; 2013 Feb; 202(1-3):126-35. PubMed ID: 23247010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two homologous fungal carbonyl reductases with different substrate specificities.
    Kristan K; Brunskole M; Stojan J; Rizner TL
    Chem Biol Interact; 2009 Mar; 178(1-3):295-302. PubMed ID: 18973748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rabbit 3-hydroxyhexobarbital dehydrogenase is a NADPH-preferring reductase with broad substrate specificity for ketosteroids, prostaglandin D₂, and other endogenous and xenobiotic carbonyl compounds.
    Endo S; Matsunaga T; Matsumoto A; Arai Y; Ohno S; El-Kabbani O; Tajima K; Bunai Y; Yamano S; Hara A; Kitade Y
    Biochem Pharmacol; 2013 Nov; 86(9):1366-75. PubMed ID: 23994167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning and characterization of four rabbit aldo-keto reductases featuring broad substrate specificity for xenobiotic and endogenous carbonyl compounds: relationship with multiple forms of drug ketone reductases.
    Endo S; Matsunaga T; Arai Y; Ikari A; Tajima K; El-Kabbani O; Yamano S; Hara A; Kitade Y
    Drug Metab Dispos; 2014 Apr; 42(4):803-12. PubMed ID: 24510382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The human short-chain dehydrogenase/reductase (SDR) superfamily: a bioinformatics summary.
    Bray JE; Marsden BD; Oppermann U
    Chem Biol Interact; 2009 Mar; 178(1-3):99-109. PubMed ID: 19061874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and bacterial expression of monomeric short-chain dehydrogenase/reductase (carbonyl reductase) from CHO-K1 cells.
    Terada T; Sugihara Y; Nakamura K; Sato R; Inazu N; Maeda M
    Eur J Biochem; 2000 Dec; 267(23):6849-57. PubMed ID: 11082196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on reduction of S-nitrosoglutathione by human carbonyl reductases 1 and 3.
    Staab CA; Hartmanová T; El-Hawari Y; Ebert B; Kisiela M; Wsol V; Martin HJ; Maser E
    Chem Biol Interact; 2011 May; 191(1-3):95-103. PubMed ID: 21256830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative characterization of prostaglandins in the uterus of early pregnant cattle.
    Ulbrich SE; Schulke K; Groebner AE; Reichenbach HD; Angioni C; Geisslinger G; Meyer HH
    Reproduction; 2009 Aug; 138(2):371-82. PubMed ID: 19470711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinformatic and biochemical characterization of DCXR and DHRS2/4 from Caenorhabditis elegans.
    Kisiela M; El-Hawari Y; Martin HJ; Maser E
    Chem Biol Interact; 2011 May; 191(1-3):75-82. PubMed ID: 21300042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.