These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
412 related articles for article (PubMed ID: 18984046)
1. The effect of difference frequency on electrocommunication: chirp production and encoding in a species of weakly electric fish, Apteronotus leptorhynchus. Hupé GJ; Lewis JE; Benda J J Physiol Paris; 2008; 102(4-6):164-72. PubMed ID: 18984046 [TBL] [Abstract][Full Text] [Related]
2. Electrocommunication signals in free swimming brown ghost knifefish, Apteronotus leptorhynchus. Hupé GJ; Lewis JE J Exp Biol; 2008 May; 211(Pt 10):1657-67. PubMed ID: 18456893 [TBL] [Abstract][Full Text] [Related]
3. The neuroethology of electrocommunication: how signal background influences sensory encoding and behaviour in Apteronotus leptorhynchus. Walz H; Hupé GJ; Benda J; Lewis JE J Physiol Paris; 2013; 107(1-2):13-25. PubMed ID: 22981958 [TBL] [Abstract][Full Text] [Related]
4. Structure and sexual dimorphism of the electrocommunication signals of the weakly electric fish, Adontosternarchus devenanzii. Zhou M; Smith GT J Exp Biol; 2006 Dec; 209(Pt 23):4809-18. PubMed ID: 17114413 [TBL] [Abstract][Full Text] [Related]
5. Hormonal and body size correlates of electrocommunication behavior during dyadic interactions in a weakly electric fish, Apteronotus leptorhynchus. Dunlap KD Horm Behav; 2002 Mar; 41(2):187-94. PubMed ID: 11855903 [TBL] [Abstract][Full Text] [Related]
6. Stimulus frequency differentially affects chirping in two species of weakly electric fish: implications for the evolution of signal structure and function. Kolodziejski JA; Sanford SE; Smith GT J Exp Biol; 2007 Jul; 210(Pt 14):2501-9. PubMed ID: 17601954 [TBL] [Abstract][Full Text] [Related]
7. Chirping response of weakly electric knife fish (Apteronotus leptorhynchus) to low-frequency electric signals and to heterospecific electric fish. Dunlap KD; DiBenedictis BT; Banever SR J Exp Biol; 2010 Jul; 213(Pt 13):2234-42. PubMed ID: 20543122 [TBL] [Abstract][Full Text] [Related]
8. From oscillators to modulators: behavioral and neural control of modulations of the electric organ discharge in the gymnotiform fish, Apteronotus leptorhynchus. Zupanc GK J Physiol Paris; 2002; 96(5-6):459-72. PubMed ID: 14692494 [TBL] [Abstract][Full Text] [Related]
9. EOD modulations of brown ghost electric fish: JARs, chirps, rises, and dips. Zakon H; Oestreich J; Tallarovic S; Triefenbach F J Physiol Paris; 2002; 96(5-6):451-8. PubMed ID: 14692493 [TBL] [Abstract][Full Text] [Related]
10. Phylogenetic comparative analysis of electric communication signals in ghost knifefishes (Gymnotiformes: Apteronotidae). Turner CR; Derylo M; de Santana CD; Alves-Gomes JA; Smith GT J Exp Biol; 2007 Dec; 210(Pt 23):4104-22. PubMed ID: 18025011 [TBL] [Abstract][Full Text] [Related]
11. Electrocommunication signals in female brown ghost electric knifefish, Apteronotus leptorhynchus. Tallarovic SK; Zakon HH J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Sep; 188(8):649-57. PubMed ID: 12355241 [TBL] [Abstract][Full Text] [Related]
12. Serotonergic activation of 5HT1A and 5HT2 receptors modulates sexually dimorphic communication signals in the weakly electric fish Apteronotus leptorhynchus. Smith GT; Combs N Horm Behav; 2008 Jun; 54(1):69-82. PubMed ID: 18336816 [TBL] [Abstract][Full Text] [Related]
13. Sex and species differences in neuromodulatory input to a premotor nucleus: a comparative study of substance P and communication behavior in weakly electric fish. Kolodziejski JA; Nelson BS; Smith GT J Neurobiol; 2005 Feb; 62(3):299-315. PubMed ID: 15515000 [TBL] [Abstract][Full Text] [Related]
14. Arginine vasotocin modulates a sexually dimorphic communication behavior in the weakly electric fish Apteronotus leptorhynchus. Bastian J; Schniederjan S; Nguyenkim J J Exp Biol; 2001 Jun; 204(Pt 11):1909-23. PubMed ID: 11441033 [TBL] [Abstract][Full Text] [Related]
15. Serotonin in a diencephalic nucleus controlling communication in an electric fish: sexual dimorphism and relationship to indicators of dominance. Telgkamp P; Combs N; Smith GT Dev Neurobiol; 2007 Feb; 67(3):339-54. PubMed ID: 17443792 [TBL] [Abstract][Full Text] [Related]
16. Electric interactions through chirping behavior in the weakly electric fish, Apteronotus leptorhynchus. Zupanc GK; Sîrbulescu RF; Nichols A; Ilies I J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Feb; 192(2):159-73. PubMed ID: 16247622 [TBL] [Abstract][Full Text] [Related]
17. Electric signals and species recognition in the wave-type gymnotiform fish Apteronotus leptorhynchus. Fugère V; Krahe R J Exp Biol; 2010 Jan; 213(2):225-36. PubMed ID: 20038655 [TBL] [Abstract][Full Text] [Related]
18. Static frequency tuning accounts for changes in neural synchrony evoked by transient communication signals. Walz H; Grewe J; Benda J J Neurophysiol; 2014 Aug; 112(4):752-65. PubMed ID: 24848476 [TBL] [Abstract][Full Text] [Related]
19. Co-adaptation of electric organ discharges and chirps in South American ghost knifefishes (Apteronotidae). Petzold JM; Marsat G; Smith GT J Physiol Paris; 2016 Oct; 110(3 Pt B):200-215. PubMed ID: 27989653 [TBL] [Abstract][Full Text] [Related]
20. Social interactions and cortisol treatment increase the production of aggressive electrocommunication signals in male electric fish, Apteronotus leptorhynchus. Dunlap KD; Pelczar PL; Knapp R Horm Behav; 2002 Sep; 42(2):97-108. PubMed ID: 12367563 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]