BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 18984566)

  • 1. Serotonin mediates a learned increase in attraction to high concentrations of benzaldehyde in aged C. elegans.
    Tsui D; van der Kooy D
    Learn Mem; 2008 Nov; 15(11):844-55. PubMed ID: 18984566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of distinct attractive and aversive mechanisms mediating benzaldehyde chemotaxis in Caenorhabditis elegans.
    Nuttley WM; Harbinder S; van der Kooy D
    Learn Mem; 2001; 8(3):170-81. PubMed ID: 11390637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A genetic dissociation of learning and recall in Caenorhabditis elegans.
    Atkinson-Leadbeater K; Nuttley WM; van der Kooy D
    Behav Neurosci; 2004 Dec; 118(6):1206-13. PubMed ID: 15598130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Serotonin mediates food-odor associative learning in the nematode Caenorhabditiselegans.
    Nuttley WM; Atkinson-Leadbeater KP; Van Der Kooy D
    Proc Natl Acad Sci U S A; 2002 Sep; 99(19):12449-54. PubMed ID: 12202746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulatory effect of ionizing radiation on food-NaCl associative learning: the role of gamma subunit of G protein in Caenorhabditis elegans.
    Sakashita T; Hamada N; Ikeda DD; Yanase S; Suzuki M; Ishii N; Kobayashi Y
    FASEB J; 2008 Mar; 22(3):713-20. PubMed ID: 17947388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxic stress-specific cytoprotective responses regulate learned behavioral decisions in C. elegans.
    Hajdú G; Gecse E; Taisz I; Móra I; Sőti C
    BMC Biol; 2021 Feb; 19(1):26. PubMed ID: 33563272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Screening of odor-receptor pairs in Caenorhabditis elegans reveals different receptors for high and low odor concentrations.
    Taniguchi G; Uozumi T; Kiriyama K; Kamizaki T; Hirotsu T
    Sci Signal; 2014 Apr; 7(323):ra39. PubMed ID: 24782565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insulin signaling plays a dual role in Caenorhabditis elegans memory acquisition and memory retrieval.
    Lin CH; Tomioka M; Pereira S; Sellings L; Iino Y; van der Kooy D
    J Neurosci; 2010 Jun; 30(23):8001-11. PubMed ID: 20534848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A natural odor attraction between lactic acid bacteria and the nematode Caenorhabditis elegans.
    Choi JI; Yoon KH; Subbammal Kalichamy S; Yoon SS; Il Lee J
    ISME J; 2016 Mar; 10(3):558-67. PubMed ID: 26241504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Olfaction and odor discrimination are mediated by the C. elegans guanylyl cyclase ODR-1.
    L'Etoile ND; Bargmann CI
    Neuron; 2000 Mar; 25(3):575-86. PubMed ID: 10774726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circuit mechanisms encoding odors and driving aging-associated behavioral declines in Caenorhabditis elegans.
    Leinwand SG; Yang CJ; Bazopoulou D; Chronis N; Srinivasan J; Chalasani SH
    Elife; 2015 Sep; 4():e10181. PubMed ID: 26394000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclear PKG localization is regulated by G₀ alpha and is necessary in the AWB neurons to mediate avoidance in Caenorhabditis elegans.
    He C; O'Halloran DM
    Neurosci Lett; 2013 Oct; 553():35-9. PubMed ID: 23954825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental signals modulate olfactory acuity, discrimination, and memory in Caenorhabditis elegans.
    Colbert HA; Bargmann CI
    Learn Mem; 1997; 4(2):179-91. PubMed ID: 10456062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A diacetyl-induced quiescence in young Caenorhabditis elegans.
    Hoffmann MC; Sellings LH; van der Kooy D
    Behav Brain Res; 2010 Dec; 214(1):12-7. PubMed ID: 20493908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between Caenorhabditis elegans individuals during chemotactic response.
    Matsuura T; Sato T; Shingai R
    Zoolog Sci; 2005 Oct; 22(10):1095-103. PubMed ID: 16286721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acute behavioral responses to pheromones in C. elegans (adult behaviors: attraction, repulsion).
    Jang H; Bargmann CI
    Methods Mol Biol; 2013; 1068():285-92. PubMed ID: 24014370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans.
    Zhang Y; Lu H; Bargmann CI
    Nature; 2005 Nov; 438(7065):179-84. PubMed ID: 16281027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dietary E. coli promotes age-dependent chemotaxis decline in C. elegans.
    Suryawinata N; Yokosawa R; Tan KHC; Lai AL; Sone R; Mori I; Noma K
    Sci Rep; 2024 Mar; 14(1):5529. PubMed ID: 38448519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A behavioral switch: cGMP and PKC signaling in olfactory neurons reverses odor preference in C. elegans.
    Tsunozaki M; Chalasani SH; Bargmann CI
    Neuron; 2008 Sep; 59(6):959-71. PubMed ID: 18817734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of chemotactic response to sodium acetate in the nematode Caenorhabditis elegans.
    Matsuura T; Oda T; Hayashi G; Sugisaki D; Ichinose M
    Zoolog Sci; 2010 Aug; 27(8):629-37. PubMed ID: 20695778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.