These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 18984605)
1. Resistance training in patients with single, large-scale deletions of mitochondrial DNA. Murphy JL; Blakely EL; Schaefer AM; He L; Wyrick P; Haller RG; Taylor RW; Turnbull DM; Taivassalo T Brain; 2008 Nov; 131(Pt 11):2832-40. PubMed ID: 18984605 [TBL] [Abstract][Full Text] [Related]
2. Endurance training and detraining in mitochondrial myopathies due to single large-scale mtDNA deletions. Taivassalo T; Gardner JL; Taylor RW; Schaefer AM; Newman J; Barron MJ; Haller RG; Turnbull DM Brain; 2006 Dec; 129(Pt 12):3391-401. PubMed ID: 17085458 [TBL] [Abstract][Full Text] [Related]
3. New insights into the metabolic consequences of large-scale mtDNA deletions: a quantitative analysis of biochemical, morphological, and genetic findings in human skeletal muscle. Schröder R; Vielhaber S; Wiedemann FR; Kornblum C; Papassotiropoulos A; Broich P; Zierz S; Elger CE; Reichmann H; Seibel P; Klockgether T; Kunz WS J Neuropathol Exp Neurol; 2000 May; 59(5):353-60. PubMed ID: 10888364 [TBL] [Abstract][Full Text] [Related]
4. Aerobic training is safe and improves exercise capacity in patients with mitochondrial myopathy. Jeppesen TD; Schwartz M; Olsen DB; Wibrand F; Krag T; Dunø M; Hauerslev S; Vissing J Brain; 2006 Dec; 129(Pt 12):3402-12. PubMed ID: 16815877 [TBL] [Abstract][Full Text] [Related]
5. Exercise and training in mitochondrial myopathies. Taivassalo T; Haller RG Med Sci Sports Exerc; 2005 Dec; 37(12):2094-101. PubMed ID: 16331135 [TBL] [Abstract][Full Text] [Related]
6. Complete restoration of a wild-type mtDNA genotype in regenerating muscle fibres in a patient with a tRNA point mutation and mitochondrial encephalomyopathy. Shoubridge EA; Johns T; Karpati G Hum Mol Genet; 1997 Dec; 6(13):2239-42. PubMed ID: 9361028 [TBL] [Abstract][Full Text] [Related]
7. Mitochondrial DNA deletions in muscle satellite cells: implications for therapies. Spendiff S; Reza M; Murphy JL; Gorman G; Blakely EL; Taylor RW; Horvath R; Campbell G; Newman J; Lochmüller H; Turnbull DM Hum Mol Genet; 2013 Dec; 22(23):4739-47. PubMed ID: 23847047 [TBL] [Abstract][Full Text] [Related]
8. Gene shifting: a novel therapy for mitochondrial myopathy. Taivassalo T; Fu K; Johns T; Arnold D; Karpati G; Shoubridge EA Hum Mol Genet; 1999 Jun; 8(6):1047-52. PubMed ID: 10332036 [TBL] [Abstract][Full Text] [Related]
9. Implications of exercise training in mtDNA defects--use it or lose it? Taivassalo T; Haller RG Biochim Biophys Acta; 2004 Dec; 1659(2-3):221-31. PubMed ID: 15576055 [TBL] [Abstract][Full Text] [Related]
10. Frequencies of myohistological mitochondrial changes in patients with mitochondrial DNA deletions and the common m.3243A>G point mutation. Zierz CM; Joshi PR; Zierz S Neuropathology; 2015 Apr; 35(2):130-6. PubMed ID: 25378026 [TBL] [Abstract][Full Text] [Related]
11. Apoptosis in mitochondrial myopathies is linked to mitochondrial proliferation. Auré K; Fayet G; Leroy JP; Lacène E; Romero NB; Lombès A Brain; 2006 May; 129(Pt 5):1249-59. PubMed ID: 16537564 [TBL] [Abstract][Full Text] [Related]
12. The spectrum of exercise tolerance in mitochondrial myopathies: a study of 40 patients. Taivassalo T; Jensen TD; Kennaway N; DiMauro S; Vissing J; Haller RG Brain; 2003 Feb; 126(Pt 2):413-23. PubMed ID: 12538407 [TBL] [Abstract][Full Text] [Related]
13. Pathological mechanisms underlying single large-scale mitochondrial DNA deletions. Rocha MC; Rosa HS; Grady JP; Blakely EL; He L; Romain N; Haller RG; Newman J; McFarland R; Ng YS; Gorman GS; Schaefer AM; Tuppen HA; Taylor RW; Turnbull DM Ann Neurol; 2018 Jan; 83(1):115-130. PubMed ID: 29283441 [TBL] [Abstract][Full Text] [Related]
14. Mitochondrial DNA shifting in older adults following resistance exercise training. Tarnopolsky MA Appl Physiol Nutr Metab; 2009 Jun; 34(3):348-54. PubMed ID: 19448697 [TBL] [Abstract][Full Text] [Related]
15. An age-associated correlation between cellular bioenergy decline and mtDNA rearrangements in human skeletal muscle. Kopsidas G; Kovalenko SA; Kelso JM; Linnane AW Mutat Res; 1998 Oct; 421(1):27-36. PubMed ID: 9748486 [TBL] [Abstract][Full Text] [Related]
16. Short- and long-term effects of endurance training in patients with mitochondrial myopathy. Jeppesen TD; Dunø M; Schwartz M; Krag T; Rafiq J; Wibrand F; Vissing J Eur J Neurol; 2009 Dec; 16(12):1336-9. PubMed ID: 19486129 [TBL] [Abstract][Full Text] [Related]
17. Failed upregulation of TFAM protein and mitochondrial DNA in oxidatively deficient fibers of chronic obstructive pulmonary disease locomotor muscle. Konokhova Y; Spendiff S; Jagoe RT; Aare S; Kapchinsky S; MacMillan NJ; Rozakis P; Picard M; Aubertin-Leheudre M; Pion CH; Bourbeau J; Hepple RT; Taivassalo T Skelet Muscle; 2016; 6():10. PubMed ID: 26893822 [TBL] [Abstract][Full Text] [Related]
18. A novel heteroplasmic tRNAleu(CUN) mtDNA point mutation in a sporadic patient with mitochondrial encephalomyopathy segregates rapidly in skeletal muscle and suggests an approach to therapy. Fu K; Hartlen R; Johns T; Genge A; Karpati G; Shoubridge EA Hum Mol Genet; 1996 Nov; 5(11):1835-40. PubMed ID: 8923013 [TBL] [Abstract][Full Text] [Related]
19. Association of myopathy with large-scale mitochondrial DNA duplications and deletions: which is pathogenic? Manfredi G; Vu T; Bonilla E; Schon EA; DiMauro S; Arnaudo E; Zhang L; Rowland LP; Hirano M Ann Neurol; 1997 Aug; 42(2):180-8. PubMed ID: 9266727 [TBL] [Abstract][Full Text] [Related]
20. Combined fibre atrophy and decreased muscle regeneration capacity driven by mitochondrial DNA alterations underlie the development of sarcopenia. Kimoloi S; Sen A; Guenther S; Braun T; Brügmann T; Sasse P; Wiesner RJ; Pla-Martín D; Baris OR J Cachexia Sarcopenia Muscle; 2022 Aug; 13(4):2132-2145. PubMed ID: 35765148 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]