These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Endocyclic extension of porphyrin pi-system by interior functionalization of N-confused porphyrins. Toganoh M; Kimura T; Furuta H Chemistry; 2008; 14(34):10585-94. PubMed ID: 18924191 [TBL] [Abstract][Full Text] [Related]
4. Calix[4]pyrrole-capped metalloporphyrins as ditopic receptor models for anions. Panda PK; Lee CH Org Lett; 2004 Mar; 6(5):671-4. PubMed ID: 14986946 [TBL] [Abstract][Full Text] [Related]
5. Metalloporphyrin-capped calix[4]pyrroles: heteroditopic receptor models for anion recognition and ligand fixation. Panda PK; Lee CH J Org Chem; 2005 Apr; 70(8):3148-56. PubMed ID: 15822977 [TBL] [Abstract][Full Text] [Related]
6. Gram-scale synthesis of nickel(II) norcorrole: the smallest antiaromatic porphyrinoid. Ito T; Hayashi Y; Shimizu S; Shin JY; Kobayashi N; Shinokubo H Angew Chem Int Ed Engl; 2012 Aug; 51(34):8542-5. PubMed ID: 22811074 [TBL] [Abstract][Full Text] [Related]
7. Insertion of Ni(I) into Porphyrins at Room Temperature: Preparation of Ni(II)porphyrins, and Ni(II)chlorins and Observation of Hydroporphyrin Intermediates. Peters MK; Herges R Inorg Chem; 2018 Mar; 57(6):3177-3182. PubMed ID: 29498852 [TBL] [Abstract][Full Text] [Related]
8. Unprecedented degradation of nickel(II) 2,3,12,13-tetrabromo-5,10,15,20-tetraarylporphyrins by the anion of E-benzaldoxime: a novel approach to nickel(II) chlorophins and bacteriophins. Li KL; Guo CC; Chen QY Org Lett; 2009 Jul; 11(13):2724-7. PubMed ID: 19476341 [TBL] [Abstract][Full Text] [Related]
9. Facile and efficient hypervalent iodine(III)-mediated meso-functionalization of porphyrins. Shen DM; Liu C; Chen XG; Chen QY J Org Chem; 2009 Jan; 74(1):206-11. PubMed ID: 19053580 [TBL] [Abstract][Full Text] [Related]
10. Synthesis, electrochemistry, absorption and electro-polymerization of aniline-ethynyl metalloporphyrins. Lin CY; Hung YC; Liu CM; Lo CF; Lin YC; Lin CL Dalton Trans; 2005 Jan; (2):396-401. PubMed ID: 15616732 [TBL] [Abstract][Full Text] [Related]
11. Nucleophilic substitution as a tool for the synthesis of unsymmetrical porphyrins. Senge MO Acc Chem Res; 2005 Sep; 38(9):733-43. PubMed ID: 16171316 [TBL] [Abstract][Full Text] [Related]
13. Stepwise fusion of porphyrin β,β'-pyrrolic positions to imidazole rings. Lo M; Lefebvre JF; Leclercq D; van der Lee A; Richeter S Org Lett; 2011 Jun; 13(12):3110-3. PubMed ID: 21604780 [TBL] [Abstract][Full Text] [Related]
14. Direct arylation of meso-formyl porphyrin. Tokuji S; Awane H; Yorimitsu H; Osuka A Chemistry; 2013 Jan; 19(1):64-8. PubMed ID: 23255083 [TBL] [Abstract][Full Text] [Related]
15. Simple and catalyst-free synthesis of meso-O-, -S-, and -C-substituted porphyrins. Chen Q; Zhu YZ; Fan QJ; Zhang SC; Zheng JY Org Lett; 2014 Mar; 16(6):1590-3. PubMed ID: 24597715 [TBL] [Abstract][Full Text] [Related]
16. Ring expansions and contractions of metalloporphyrins. Callot HJ Dalton Trans; 2008 Dec; (45):6346-57. PubMed ID: 19002318 [TBL] [Abstract][Full Text] [Related]
17. Direct evidence for mode-specific vibrational energy relaxation from quantum time-dependent perturbation theory. III. The nu(4) and nu(7) modes of nonplanar nickel porphyrin models. Zhang Y; Straub JE J Chem Phys; 2009 Jun; 130(21):215101. PubMed ID: 19508100 [TBL] [Abstract][Full Text] [Related]
18. Ambient temperature activation of haloporphyrinic-enediynes: electronic contributions to bergman cycloaromatization. Nath M; Huffman JC; Zaleski JM J Am Chem Soc; 2003 Sep; 125(38):11484-5. PubMed ID: 13129336 [TBL] [Abstract][Full Text] [Related]