These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 18985391)

  • 21. Performance of Wild and Laboratory-Reared Gypsy Moth (Lepidoptera: Erebidae): A Comparison between Foliage and Artificial Diet.
    Grayson KL; Parry D; Faske TM; Hamilton A; Tobin PC; Agosta SJ; Johnson DM
    Environ Entomol; 2015 Jun; 44(3):864-73. PubMed ID: 26313993
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Using mechanistic models to understand synchrony in forest insect populations: the North American gypsy moth as a case study.
    Abbott KC; Dwyer G
    Am Nat; 2008 Nov; 172(5):613-24. PubMed ID: 18821838
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of Survival and Development of Gypsy Moth
    Keena MA; Richards JY
    Insects; 2020 Apr; 11(4):. PubMed ID: 32344583
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterizing and Simulating the Movement of Late-Instar Gypsy Moth (Lepidoptera: Erebidae) to Evaluate the Effectiveness of Regulatory Practices.
    Wittman JT; Nicoll RA; Myers SW; Chaloux PH; Aukema BH
    Environ Entomol; 2019 Jun; 48(3):496-505. PubMed ID: 30951581
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel insights on population and range edge dynamics using an unparalleled spatiotemporal record of species invasion.
    Grayson KL; Johnson DM
    J Anim Ecol; 2018 May; 87(3):581-593. PubMed ID: 28892141
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pheromone-trapping the nun moth, Lymantria monacha (Lepidoptera: Lymantriidae) in Inner Mongolia, China.
    Wang P; Chen GF; Zhang JS; Xue Q; Zhang JH; Chen C; Zhang QH
    Insect Sci; 2017 Aug; 24(4):631-639. PubMed ID: 27122095
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of Bacillus thuringiensis application timing on population dynamics of gypsy moth in Mediterranean cork oak forests.
    Mannu R; Cocco A; Luciano P; Lentini A
    Pest Manag Sci; 2020 Mar; 76(3):1103-1111. PubMed ID: 31576666
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Forest defoliator outbreaks under climate change: effects on the frequency and severity of outbreaks of five pine insect pests.
    Haynes KJ; Allstadt AJ; Klimetzek D
    Glob Chang Biol; 2014 Jun; 20(6):2004-18. PubMed ID: 24464875
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Competition between the gypsy moth, Lymantria dispar, and the northern tiger swallowtail, Papilio canadensis: interactions mediated by host plant chemistry, pathogens, and parasitoids.
    Redman AM; Scriber JM
    Oecologia; 2000 Oct; 125(2):218-228. PubMed ID: 24595833
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Allee effects and pulsed invasion by the gypsy moth.
    Johnson DM; Liebhold AM; Tobin PC; Bjørnstad ON
    Nature; 2006 Nov; 444(7117):361-3. PubMed ID: 17108964
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Long-distance dispersal of the gypsy moth (Lepidoptera: Lymantriidae) facilitated its initial invasion of Wisconsin.
    Tobin PC; Blackburn LM
    Environ Entomol; 2008 Feb; 37(1):87-93. PubMed ID: 18348800
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Landscape-Level Patterns of Elevated FS1 Asian Allele Frequencies in Populations of Gypsy Moth (Lepidoptera: Erebidae) at a Northern U.S. Boundary.
    Streifel MA; Tobin PC; Hunt L; Nadel H; Molongoski JJ; Aukema BH
    Environ Entomol; 2017 Apr; 46(2):403-412. PubMed ID: 28334091
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of pathogen exposure on life-history variation in the gypsy moth (Lymantria dispar).
    Páez DJ; Fleming-Davies AE; Dwyer G
    J Evol Biol; 2015 Oct; 28(10):1828-39. PubMed ID: 26201381
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Emergent fungal entomopathogen does not alter density dependence in a viral competitor.
    Liebhold AM; Plymale R; Elkinton JS; Hajek AE
    Ecology; 2013 Jun; 94(6):1217-22. PubMed ID: 23923480
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Host-specific growth responses of Larix kaempferi and Quercus acutissima to Asian gypsy moth defoliation in central Korea.
    Jung JB; Kim ES; Lim JH; Choi WI
    Sci Rep; 2024 Jan; 14(1):1477. PubMed ID: 38233543
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Geographical variation in the spatial synchrony of a forest-defoliating insect: isolation of environmental and spatial drivers.
    Haynes KJ; Bjørnstad ON; Allstadt AJ; Liebhold AM
    Proc Biol Sci; 2013 Feb; 280(1753):20122373. PubMed ID: 23282993
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Phenology Model for Asian Gypsy Moth Egg Hatch.
    Gray DR; Keena MA
    Environ Entomol; 2019 Aug; 48(4):903-910. PubMed ID: 31145448
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Risk assessment of the gypsy moth, Lymantria dispar (L), in New Zealand based on phenology modelling.
    Pitt JP; Régnière J; Worner S
    Int J Biometeorol; 2007 Mar; 51(4):295-305. PubMed ID: 17120064
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [THE PROOF OF VERTICAL TRANSMISSION OF THE NUCLEOPOLYHEDROVIRUS IN MANY GENERATIONS OF THE GYPSY MOTH LYMANTRIA DISPAR L].
    Ilyinykh AV; Polenogova OV
    Vopr Virusol; 2016; 61(2):85-8. PubMed ID: 27451501
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of climate change on larch budmoth cyclic outbreaks.
    Iyengar SV; Balakrishnan J; Kurths J
    Sci Rep; 2016 Jun; 6():27845. PubMed ID: 27293118
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.