These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 18985550)

  • 1. Effects of alignment on the roll-over shapes of prosthetic feet.
    Hansen A
    Prosthet Orthot Int; 2008 Dec; 32(4):390-402. PubMed ID: 18985550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of prosthetic foot roll-over shape arc length on the gait of trans-tibial prosthesis users.
    Hansen AH; Meier MR; Sessoms PH; Childress DS
    Prosthet Orthot Int; 2006 Dec; 30(3):286-99. PubMed ID: 17162519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roll-over shapes of human locomotor systems: effects of walking speed.
    Hansen AH; Childress DS; Knox EH
    Clin Biomech (Bristol, Avon); 2004 May; 19(4):407-14. PubMed ID: 15109762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roll-over shapes of the ankle-foot and knee-ankle-foot systems of able-bodied children.
    Hansen AH; Meier MR
    Clin Biomech (Bristol, Avon); 2010 Mar; 25(3):248-55. PubMed ID: 20015582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roll-over characteristics of human walking on inclined surfaces.
    Hansen AH; Childress DS; Miff SC
    Hum Mov Sci; 2004 Dec; 23(6):807-21. PubMed ID: 15664674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigations of roll-over shape: implications for design, alignment, and evaluation of ankle-foot prostheses and orthoses.
    Hansen AH; Childress DS
    Disabil Rehabil; 2010; 32(26):2201-9. PubMed ID: 20626257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roll-over shapes of the able-bodied knee-ankle-foot system during gait initiation, steady-state walking, and gait termination.
    Miff SC; Hansen AH; Childress DS; Gard SA; Meier MR
    Gait Posture; 2008 Feb; 27(2):316-22. PubMed ID: 17544273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative roll-over analysis of prosthetic feet.
    Curtze C; Hof AL; van Keeken HG; Halbertsma JP; Postema K; Otten B
    J Biomech; 2009 Aug; 42(11):1746-53. PubMed ID: 19446814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alignment of trans-tibial prostheses based on roll-over shape principles.
    Hansen AH; Meier MR; Sam M; Childress DS; Edwards ML
    Prosthet Orthot Int; 2003 Aug; 27(2):89-99. PubMed ID: 14571938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The 'shape&roll' prosthetic foot: I. Design and development of appropriate technology for low-income countries.
    Sam M; Childress DS; Hansen AH; Meier MR; Lambla S; Grahn EC; Rolock JS
    Med Confl Surviv; 2004; 20(4):294-306. PubMed ID: 15688881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of transverse rotation angle on compression and effective lever arm of prosthetic feet during simulated stance.
    Major MJ; Howard D; Jones R; Twiste M
    Prosthet Orthot Int; 2012 Jun; 36(2):231-5. PubMed ID: 22389423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective rocker shapes used by able-bodied persons for walking and fore-aft swaying: implications for design of ankle-foot prostheses.
    Hansen AH; Wang CC
    Gait Posture; 2010 Jun; 32(2):181-4. PubMed ID: 20471833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterisation of prosthetic feet used in low-income countries.
    Sam M; Hansen AH; Childress DS
    Prosthet Orthot Int; 2004 Aug; 28(2):132-40. PubMed ID: 15382807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The 'shape&roll' prosthetic foot: II. Field testing in El Salvador.
    Meier MR; Sam M; Hansen AH; Childress DS
    Med Confl Surviv; 2004; 20(4):307-25. PubMed ID: 15688882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frontal plane roll-over analysis of prosthetic feet.
    van Hal ES; Curtze C; Postema K; Hijmans JM; Otten E
    J Biomech; 2021 Aug; 125():110610. PubMed ID: 34252823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A low-dimensional sagittal-plane forward-dynamic model for asymmetric gait and its application to study the gait of transtibial prosthesis users.
    Srinivasan S; Westervelt ER; Hansen AH
    J Biomech Eng; 2009 Mar; 131(3):031003. PubMed ID: 19154062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical design framework for prosthetic feet: Experimentally validated non-linear finite element procedure.
    Balaramakrishnan TM; Natarajan S; Sujatha S
    Med Eng Phys; 2021 Jun; 92():64-70. PubMed ID: 34167713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal foot shape for a passive dynamic biped.
    Kwan M; Hubbard M
    J Theor Biol; 2007 Sep; 248(2):331-9. PubMed ID: 17570405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prosthetic ankle-foot mechanism capable of automatic adaptation to the walking surface.
    Williams RJ; Hansen AH; Gard SA
    J Biomech Eng; 2009 Mar; 131(3):035002. PubMed ID: 19154079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A robust technique for optimal fitting of roll-over shapes of human locomotor systems.
    Bapat GM; Myers SA
    Med Eng Phys; 2022 Feb; 100():103756. PubMed ID: 35144739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.