BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 18985759)

  • 1. Bioinspired superhydrophobic poly(L-lactic acid) surfaces control bone marrow derived cells adhesion and proliferation.
    Alves NM; Shi J; Oramas E; Santos JL; Tomás H; Mano JF
    J Biomed Mater Res A; 2009 Nov; 91(2):480-8. PubMed ID: 18985759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards bioinspired superhydrophobic poly(L-lactic acid) surfaces using phase inversion-based methods.
    Shi J; Alves NM; Mano JF
    Bioinspir Biomim; 2008 Sep; 3(3):034003. PubMed ID: 18626131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micro-/nano-structured superhydrophobic surfaces in the biomedical field: part I: basic concepts and biomimetic approaches.
    Lima AC; Mano JF
    Nanomedicine (Lond); 2015 Jan; 10(1):103-19. PubMed ID: 25597772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of a functionally flexible, three-dimensional, biomimetic poly(L-lactic acid) scaffold with improved cell adhesion.
    Alvarez-Barreto JF; Shreve MC; Deangelis PL; Sikavitsas VI
    Tissue Eng; 2007 Jun; 13(6):1205-17. PubMed ID: 17518730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly(D,L-lactic acid)-poly(ethylene glycol)-monomethyl ether diblock copolymers control adhesion and osteoblastic differentiation of marrow stromal cells.
    Lieb E; Tessmar J; Hacker M; Fischbach C; Rose D; Blunk T; Mikos AG; Göpferich A; Schulz MB
    Tissue Eng; 2003 Feb; 9(1):71-84. PubMed ID: 12625956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of microgrooved poly-l-lactic (PLA) surfaces on proliferation, cytoskeletal organization, and mineralized matrix formation of rat bone marrow cells.
    Matsuzaka K; Walboomers F; de Ruijter A; Jansen JA
    Clin Oral Implants Res; 2000 Aug; 11(4):325-33. PubMed ID: 11168225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micro/nano-structured superhydrophobic surfaces in the biomedical field: part II: applications overview.
    Lima AC; Mano JF
    Nanomedicine (Lond); 2015 Jan; 10(2):271-97. PubMed ID: 25600971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion.
    Bhushan B; Jung YC; Koch K
    Philos Trans A Math Phys Eng Sci; 2009 May; 367(1894):1631-72. PubMed ID: 19376764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A poly(L-lactic acid) nanofibre mesh scaffold for endothelial cells on vascular prostheses.
    François S; Chakfé N; Durand B; Laroche G
    Acta Biomater; 2009 Sep; 5(7):2418-28. PubMed ID: 19345622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates.
    Badami AS; Kreke MR; Thompson MS; Riffle JS; Goldstein AS
    Biomaterials; 2006 Feb; 27(4):596-606. PubMed ID: 16023716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photo-initiated grafting of gelatin/N-maleic acyl-chitosan to enhance endothelial cell adhesion, proliferation and function on PLA surface.
    Zhu A; Zhao F; Ma T
    Acta Biomater; 2009 Jul; 5(6):2033-44. PubMed ID: 19299215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermoresponsive terpolymeric films applicable for osteoblastic cell growth and noninvasive cell sheet harvesting.
    Kim YS; Lim JY; Donahue HJ; Lowe TL
    Tissue Eng; 2005; 11(1-2):30-40. PubMed ID: 15738659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fibroblast response is enhanced by poly(L-lactic acid) nanotopography edge density and proximity.
    Milner KR; Siedlecki CA
    Int J Nanomedicine; 2007; 2(2):201-11. PubMed ID: 17722548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wettability influences cell behavior on superhydrophobic surfaces with different topographies.
    Lourenço BN; Marchioli G; Song W; Reis RL; van Blitterswijk CA; Karperien M; van Apeldoorn A; Mano JF
    Biointerphases; 2012 Dec; 7(1-4):46. PubMed ID: 22833364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic superhydrophobic surfaces by combining mussel-inspired adhesion with lotus-inspired coating.
    Xue CH; Ji XQ; Zhang J; Ma JZ; Jia ST
    Nanotechnology; 2015 Aug; 26(33):335602. PubMed ID: 26222622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superhydrophobic PLA fabrics prepared by UV photo-grafting of hydrophobic silica particles possessing vinyl groups.
    Bae GY; Jang J; Jeong YG; Lyoo WS; Min BG
    J Colloid Interface Sci; 2010 Apr; 344(2):584-7. PubMed ID: 20138632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elaboration and surface modification of structured poly(L-lactic acid) thin film on various substrates.
    Poncin-Epaillard F; Shavdina O; Debarnot D
    Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2526-33. PubMed ID: 23623064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro study of human vascular endothelial cell function on materials with various surface roughness.
    Xu C; Yang F; Wang S; Ramakrishna S
    J Biomed Mater Res A; 2004 Oct; 71(1):154-61. PubMed ID: 15368265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human osteoprogenitor bone formation using encapsulated bone morphogenetic protein 2 in porous polymer scaffolds.
    Yang XB; Whitaker MJ; Sebald W; Clarke N; Howdle SM; Shakesheff KM; Oreffo RO
    Tissue Eng; 2004; 10(7-8):1037-45. PubMed ID: 15363161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Experimental studies on a new bone tissue engineered scaffold biomaterials combined with cultured marrow stromal stem cells in vitro].
    Pan H; Zheng Q; Guo X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Jan; 21(1):65-9. PubMed ID: 17305008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.