These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 18986247)
1. Myeloid differentiation primary response gene 88 is required for the resolution of otitis media. Hernandez M; Leichtle A; Pak K; Ebmeyer J; Euteneuer S; Obonyo M; Guiney DG; Webster NJ; Broide DH; Ryan AF; Wasserman SI J Infect Dis; 2008 Dec; 198(12):1862-9. PubMed ID: 18986247 [TBL] [Abstract][Full Text] [Related]
2. Otitis Media and Nasopharyngeal Colonization in Deniffel D; Nuyen B; Pak K; Suzukawa K; Hung J; Kurabi A; Wasserman SI; Ryan AF Infect Immun; 2017 Nov; 85(11):. PubMed ID: 28847849 [TBL] [Abstract][Full Text] [Related]
3. The toll-Like receptor adaptor TRIF contributes to otitis media pathogenesis and recovery. Leichtle A; Hernandez M; Pak K; Webster NJ; Wasserman SI; Ryan AF BMC Immunol; 2009 Aug; 10():45. PubMed ID: 19656404 [TBL] [Abstract][Full Text] [Related]
4. The inflammasome adaptor ASC contributes to multiple innate immune processes in the resolution of otitis media. Kurabi A; Lee J; Wong C; Pak K; Hoffman HM; Ryan AF; Wasserman SI Innate Immun; 2015 Feb; 21(2):203-14. PubMed ID: 24652041 [TBL] [Abstract][Full Text] [Related]
5. Toll-like receptor 9 is not important for host defense against Haemophilus influenzae. Wieland CW; Florquin S; van der Poll T Immunobiology; 2010 Nov; 215(11):910-4. PubMed ID: 19942314 [TBL] [Abstract][Full Text] [Related]
6. The transcriptome of a complete episode of acute otitis media. Hernandez M; Leichtle A; Pak K; Webster NJ; Wasserman SI; Ryan AF BMC Genomics; 2015 Apr; 16(1):259. PubMed ID: 25888408 [TBL] [Abstract][Full Text] [Related]
8. NOD2/RICK-dependent β-defensin 2 regulation is protective for nontypeable Haemophilus influenzae-induced middle ear infection. Woo JI; Oh S; Webster P; Lee YJ; Lim DJ; Moon SK PLoS One; 2014; 9(3):e90933. PubMed ID: 24625812 [TBL] [Abstract][Full Text] [Related]
9. CC chemokine ligand 3 overcomes the bacteriocidal and phagocytic defect of macrophages and hastens recovery from experimental otitis media in TNF-/- mice. Leichtle A; Hernandez M; Ebmeyer J; Yamasaki K; Lai Y; Radek K; Choung YH; Euteneuer S; Pak K; Gallo R; Wasserman SI; Ryan AF J Immunol; 2010 Mar; 184(6):3087-97. PubMed ID: 20164426 [TBL] [Abstract][Full Text] [Related]
10. Role of Toll-like receptor 4 in innate immune responses in a mouse model of acute otitis media. Hirano T; Kodama S; Fujita K; Maeda K; Suzuki M FEMS Immunol Med Microbiol; 2007 Feb; 49(1):75-83. PubMed ID: 17266713 [TBL] [Abstract][Full Text] [Related]
11. The role of DNA sensing and innate immune receptor TLR9 in otitis media. Leichtle A; Hernandez M; Lee J; Pak K; Webster NJ; Wollenberg B; Wasserman SI; Ryan AF Innate Immun; 2012 Feb; 18(1):3-13. PubMed ID: 21239460 [TBL] [Abstract][Full Text] [Related]
12. Spiral ligament fibrocyte-derived MCP-1/CCL2 contributes to inner ear inflammation secondary to nontypeable H. influenzae-induced otitis media. Woo JI; Pan H; Oh S; Lim DJ; Moon SK BMC Infect Dis; 2010 Oct; 10():314. PubMed ID: 21029462 [TBL] [Abstract][Full Text] [Related]
13. Expression of surfactant Protein-A in the Haemophilus influenzae-induced otitis media in a rat model. Yu GH; Kim HB; Ko SH; Kim YW; Lim YS; Park SW; Cho CG; Park JH Int J Pediatr Otorhinolaryngol; 2018 Sep; 112():61-66. PubMed ID: 30055742 [TBL] [Abstract][Full Text] [Related]
14. Kinetic analysis and evaluation of the mechanisms involved in the resolution of experimental nontypeable Haemophilus influenzae-induced otitis media after transcutaneous immunization. Novotny LA; Clements JD; Bakaletz LO Vaccine; 2013 Jul; 31(34):3417-26. PubMed ID: 23092856 [TBL] [Abstract][Full Text] [Related]
15. Toll-like receptor 2-dependent NF-kappaB activation is involved in nontypeable Haemophilus influenzae-induced monocyte chemotactic protein 1 up-regulation in the spiral ligament fibrocytes of the inner ear. Moon SK; Woo JI; Lee HY; Park R; Shimada J; Pan H; Gellibolian R; Lim DJ Infect Immun; 2007 Jul; 75(7):3361-72. PubMed ID: 17452470 [TBL] [Abstract][Full Text] [Related]
16. Antibiotic modulation of mucins in otitis media; should this change our approach to watchful waiting? Hong W; Khampang P; Kerschner AR; Mackinnon AC; Yan K; Simpson PM; Kerschner JE Int J Pediatr Otorhinolaryngol; 2019 Oct; 125():134-140. PubMed ID: 31302575 [TBL] [Abstract][Full Text] [Related]
17. TLR2 promotes macrophage recruitment and Streptococcus pneumoniae clearance during mouse otitis media. Huang Y; Wang Z; Jin C; Wang L; Zhang X; Xu W; Xiang Y; Wang W; He X; Yin Y; He Y Pediatr Res; 2016 Dec; 80(6):886-893. PubMed ID: 27463737 [TBL] [Abstract][Full Text] [Related]
18. A new model for non-typeable Haemophilus influenzae middle ear infection in the Junbo mutant mouse. Hood D; Moxon R; Purnell T; Richter C; Williams D; Azar A; Crompton M; Wells S; Fray M; Brown SD; Cheeseman MT Dis Model Mech; 2016 Jan; 9(1):69-79. PubMed ID: 26611891 [TBL] [Abstract][Full Text] [Related]
19. Phosphorylcholine decreases early inflammation and promotes the establishment of stable biofilm communities of nontypeable Haemophilus influenzae strain 86-028NP in a chinchilla model of otitis media. Hong W; Mason K; Jurcisek J; Novotny L; Bakaletz LO; Swords WE Infect Immun; 2007 Feb; 75(2):958-65. PubMed ID: 17130253 [TBL] [Abstract][Full Text] [Related]
20. Induction of beta defensin 2 by NTHi requires TLR2 mediated MyD88 and IRAK-TRAF6-p38MAPK signaling pathway in human middle ear epithelial cells. Lee HY; Takeshita T; Shimada J; Akopyan A; Woo JI; Pan H; Moon SK; Andalibi A; Park RK; Kang SH; Kang SS; Gellibolian R; Lim DJ BMC Infect Dis; 2008 Jun; 8():87. PubMed ID: 18578886 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]