These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 18986654)

  • 1. A modified lap test to more accurately estimate interfacial shear strength for bonded tissues.
    Sitterle VB; Sun W; Levenston ME
    J Biomech; 2008 Nov; 41(15):3260-4. PubMed ID: 18986654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical properties of articular cartilage as a standard for biologically integrated interfaces.
    Fierlbeck J; Hammer J; Englert C; Reuben RL
    Technol Health Care; 2006; 14(6):541-7. PubMed ID: 17148867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. T-peel test for the analysis of articular cartilage integration.
    Englert C; Greiner G; Berner A; Hammer J
    Stud Health Technol Inform; 2008; 133():95-102. PubMed ID: 18376017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of notch geometry and interface on stress concentration and distribution in micro-tensile bond strength specimens.
    Neves Ade A; Coutinho E; Cardoso MV; Jaecques S; Lambrechts P; Sloten JV; Van Oosterwyck H; Van Meerbeek B
    J Dent; 2008 Oct; 36(10):808-15. PubMed ID: 18649985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A phenomenological approach toward patient-specific computational modeling of articular cartilage including collagen fiber tracking.
    Pierce DM; Trobin W; Trattnig S; Bischof H; Holzapfel GA
    J Biomech Eng; 2009 Sep; 131(9):091006. PubMed ID: 19725695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel lap test determines the mechanics of delamination between annular lamellae of the intervertebral disc.
    Gregory DE; Veldhuis JH; Horst C; Wayne Brodland G; Callaghan JP
    J Biomech; 2011 Jan; 44(1):97-102. PubMed ID: 20850752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrative repair of articular cartilage in vitro: adhesive strength of the interface region.
    Reindel ES; Ayroso AM; Chen AC; Chun DM; Schinagl RM; Sah RL
    J Orthop Res; 1995 Sep; 13(5):751-60. PubMed ID: 7472754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The slippery slope: critical perspectives on in vitro research methodologies.
    Kelly JR; Benetti P; Rungruanganunt P; Bona AD
    Dent Mater; 2012 Jan; 28(1):41-51. PubMed ID: 22192250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parametric analysis of the stress distribution on the articular cartilage and subchondral bone.
    Wang Y; Wei HW; Yu TC; Cheng CK
    Biomed Mater Eng; 2007; 17(4):241-7. PubMed ID: 17611300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical characteristics of articular cartilage bonds.
    Englert C; Fierlbeck J; von Glasser SS; Nerlich M; Hammer J
    Clin Biomech (Bristol, Avon); 2007 Aug; 22(7):849-55. PubMed ID: 17570569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A finite element analysis methodology for representing the articular cartilage functional structure.
    Olsen S; Oloyede A
    Comput Methods Biomech Biomed Engin; 2002 Dec; 5(6):377-86. PubMed ID: 12468419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying dynamic mechanical properties of human placenta tissue using optimization techniques with specimen-specific finite-element models.
    Hu J; Klinich KD; Miller CS; Nazmi G; Pearlman MD; Schneider LW; Rupp JD
    J Biomech; 2009 Nov; 42(15):2528-34. PubMed ID: 19665131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tensile properties of the mandibular condylar cartilage.
    Singh M; Detamore MS
    J Biomech Eng; 2008 Feb; 130(1):011009. PubMed ID: 18298185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of shear and tensile bond strength between dentin and ceramics using dual-polymerizing resin cements.
    Pekkan G; Hekimoglu C
    J Prosthet Dent; 2009 Oct; 102(4):242-52. PubMed ID: 19782827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methods to assess in vitro wear of articular cartilage.
    McGann ME; Vahdati A; Wagner DR
    Proc Inst Mech Eng H; 2012 Aug; 226(8):612-22. PubMed ID: 23057234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new three-dimensional exponential material model of the coronary arterial wall to include shear stress due to torsion.
    Van Epps JS; Vorp DA
    J Biomech Eng; 2008 Oct; 130(5):051001. PubMed ID: 19045508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity analysis of permeability parameters of bovine nucleus pulposus obtained through inverse fitting of the nonlinear biphasic equation: effect of sampling strategy.
    Riches PE
    Comput Methods Biomech Biomed Engin; 2012; 15(1):29-36. PubMed ID: 21749275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A biphasic viscohyperelastic fibril-reinforced model for articular cartilage: formulation and comparison with experimental data.
    García JJ; Cortés DH
    J Biomech; 2007; 40(8):1737-44. PubMed ID: 17014853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite element prediction of transchondral stress and strain in the human hip.
    Henak CR; Ateshian GA; Weiss JA
    J Biomech Eng; 2014 Feb; 136(2):021021. PubMed ID: 24292495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical investigation of macro- and micro-mechanics of a ceramic veneer bonded with various cement thicknesses using the typical and submodeling finite element approaches.
    Liu HL; Lin CL; Sun MT; Chang YH
    J Dent; 2009 Feb; 37(2):141-8. PubMed ID: 19084316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.