BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 18986671)

  • 1. Photooxidation and subsequent biodegradability of recalcitrant tri-alkyl phosphates TCEP and TBP in water.
    Watts MJ; Linden KG
    Water Res; 2008 Dec; 42(20):4949-54. PubMed ID: 18986671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advanced oxidation kinetics of aqueous trialkyl phosphate flame retardants and plasticizers.
    Watts MJ; Linden KG
    Environ Sci Technol; 2009 Apr; 43(8):2937-42. PubMed ID: 19475974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. UV/H
    Ji Q; He H; Gao Z; Wang X; Yang S; Sun C; Li S; Wang Y; Zhang L
    J Environ Sci (China); 2020 Dec; 98():55-61. PubMed ID: 33097158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. UV-driven hydroxyl radical oxidation of tris(2-chloroethyl) phosphate: Intermediate products and residual toxicity.
    Liu J; Ye J; Chen Y; Li C; Ou H
    Chemosphere; 2018 Jan; 190():225-233. PubMed ID: 28992474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling hydroxyl radical distribution and trialkyl phosphates oxidation in UV-H2O2 photoreactors using computational fluid dynamics.
    Santoro D; Raisee M; Moghaddami M; Ducoste J; Sasges M; Liberti L; Notarnicola M
    Environ Sci Technol; 2010 Aug; 44(16):6233-41. PubMed ID: 20704221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics and degradation mechanism of tris (1-chloro-2-propyl) phosphate in the UV/H
    Son Y; Lee YM; Zoh KD
    Chemosphere; 2020 Dec; 260():127461. PubMed ID: 32673865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidation of Tris (2-chloroethyl) phosphate in aqueous solution by UV-activated peroxymonosulfate: Kinetics, water matrix effects, degradation products and reaction pathways.
    Xu X; Chen J; Qu R; Wang Z
    Chemosphere; 2017 Oct; 185():833-843. PubMed ID: 28735236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermally activated persulfate (TAP)-enhanced tris(2-chloroethyl) phosphate removal in real-world waters based on a response-surface approach as well as toxicological evaluation on its degradation products.
    Lei H; Wang J; Sun Y; Wu Z; Wang X; Wang Y; Wang X
    Ecotoxicol Environ Saf; 2024 Jan; 270():115924. PubMed ID: 38171103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation mechanism of tris(2-chloroethyl) phosphate (TCEP) as an emerging contaminant in advanced oxidation processes: A DFT modelling approach.
    Xia H; Zhang W; Yang Y; Zhang W; Purchase D; Zhao C; Song X; Wang Y
    Chemosphere; 2021 Jun; 273():129674. PubMed ID: 33571912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced removal of tris(2-chloroethyl) phosphate using a resin-based nanocomposite hydrated iron oxide through a Fenton-like process: Capacity evaluation and pathways.
    Liu B; Liu Z; Yu P; Pan S; Xu Y; Sun Y; Pan SY; Yu Y; Zheng H
    Water Res; 2020 May; 175():115655. PubMed ID: 32145400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation mechanism, intermediates and toxicology assessment of tris-(2-chloroisopropyl) phosphate using ultraviolet activated hydrogen peroxide.
    Yu X; Yin H; Peng H; Lu G; Liu Z; Li H; Dang Z
    Chemosphere; 2020 Feb; 241():124991. PubMed ID: 31590022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneous photocatalysis of tris(2-chloroethyl) phosphate by UV/TiO
    Ye J; Liu J; Li C; Zhou P; Wu S; Ou H
    Water Res; 2017 Nov; 124():29-38. PubMed ID: 28738271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters.
    Grebel JE; Pignatello JJ; Mitch WA
    Environ Sci Technol; 2010 Sep; 44(17):6822-8. PubMed ID: 20681567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biotransformation of Tris(2-chloroethyl) Phosphate (TCEP) in Sediment Microcosms and the Adaptation of Microbial Communities to TCEP.
    Zhou X; Liang Y; Ren G; Zheng K; Wu Y; Zeng X; Zhong Y; Yu Z; Peng P
    Environ Sci Technol; 2020 May; 54(9):5489-5497. PubMed ID: 32264671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring of the three organophosphate esters TBP, TCEP and TBEP in river water and ground water (Oder, Germany).
    Fries E; PĆ¼ttmann W
    J Environ Monit; 2003 Apr; 5(2):346-52. PubMed ID: 12729280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of alkaline phosphatase genes for utilizing a flame retardant, tris(2-chloroethyl) phosphate, in Sphingobium sp. strain TCM1.
    Takahashi S; Katanuma H; Abe K; Kera Y
    Appl Microbiol Biotechnol; 2017 Mar; 101(5):2153-2162. PubMed ID: 27866252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation mechanism of tributyl phosphate by UV/H
    D'halluin T; Lepeytre C; Leydier A; Julcour C
    Environ Technol; 2021 Nov; 42(27):4247-4259. PubMed ID: 32249685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced reactivity of iron monosulfide towards reductive transformation of tris(2-chloroethyl) phosphate in the presence of cetyltrimethylammonium bromide.
    Li D; Zhong Y; Zhu X; Wang H; Yang W; Deng Y; Huang W; Peng P
    Environ Pollut; 2020 Jul; 262():114282. PubMed ID: 32155549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic degradation of Tris (2-Chloroethyl) Phosphate (TCEP) by US/Fenton system: Experimental, DFT calculation and toxicity evaluation.
    Zhang L; Wang T; Zhang M; Liu Q; She Y; Wu S; Liu B
    Environ Sci Pollut Res Int; 2024 Jun; 31(27):39120-39137. PubMed ID: 38809409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulfate radical-based water treatment in presence of chloride: formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate.
    Lutze HV; Kerlin N; Schmidt TC
    Water Res; 2015 Apr; 72():349-60. PubMed ID: 25455043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.