BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 18986672)

  • 1. Adsorption of phenol from an aqueous solution by selected apatite adsorbents: kinetic process and impact of the surface properties.
    Bahdod A; El Asri S; Saoiabi A; Coradin T; Laghzizil A
    Water Res; 2009 Feb; 43(2):313-8. PubMed ID: 18986672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyridine and phenol removal using natural and synthetic apatites as low cost sorbents: influence of porosity and surface interactions.
    Bouyarmane H; El Asri S; Rami A; Roux C; Mahly MA; Saoiabi A; Coradin T; Laghzizil A
    J Hazard Mater; 2010 Sep; 181(1-3):736-41. PubMed ID: 20570437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenol removal from aqueous solution by adsorption and ion exchange mechanisms onto polymeric resins.
    Caetano M; Valderrama C; Farran A; Cortina JL
    J Colloid Interface Sci; 2009 Oct; 338(2):402-9. PubMed ID: 19679317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders.
    Lin K; Pan J; Chen Y; Cheng R; Xu X
    J Hazard Mater; 2009 Jan; 161(1):231-40. PubMed ID: 18573599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistic adsorption of phenol from aqueous solution onto polymeric adsorbents.
    Ming ZW; Long CJ; Cai PB; Xing ZQ; Zhang B
    J Hazard Mater; 2006 Feb; 128(2-3):123-9. PubMed ID: 16457950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: a review.
    Lin SH; Juang RS
    J Environ Manage; 2009 Mar; 90(3):1336-49. PubMed ID: 18995949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Apatite as an interesting seed to remove phosphorus from wastewater in constructed wetlands.
    Molle P; Liénard A; Grasmick A; Iwema A; Kabbabi A
    Water Sci Technol; 2005; 51(9):193-203. PubMed ID: 16042259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption behaviors of three polymeric adsorbents with amide groups for phenol in aqueous solution.
    Xu MC; Zhou Y; Huang JH
    J Colloid Interface Sci; 2008 Nov; 327(1):9-14. PubMed ID: 18757063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorus removal from wastewater by mineral apatite.
    Bellier N; Chazarenc F; Comeau Y
    Water Res; 2006 Aug; 40(15):2965-71. PubMed ID: 16828841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption rate of phenol from aqueous solution onto organobentonite: surface diffusion and kinetic models.
    Ocampo-Perez R; Leyva-Ramos R; Mendoza-Barron J; Guerrero-Coronado RM
    J Colloid Interface Sci; 2011 Dec; 364(1):195-204. PubMed ID: 21911219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Sorption kinetics of fluoride by artificial and natural hydroxyapatite].
    Trzeciak M
    Ann Acad Med Stetin; 2003; 49():91-109. PubMed ID: 15552842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sorption of selenium anionic species on apatites and iron oxides from aqueous solutions.
    Duc M; Lefevre G; Fedoroff M; Jeanjean J; Rouchaud JC; Monteil-Rivera F; Dumonceau J; Milonjic S
    J Environ Radioact; 2003; 70(1-2):61-72. PubMed ID: 12915060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical stability assessment of uranyl phosphates and apatites: selection of amendments for in situ remediation of uranium.
    Raicevic S; Wright JV; Veljkovic V; Conca JL
    Sci Total Environ; 2006 Feb; 355(1-3):13-24. PubMed ID: 15885755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Competitive adsorption of glycine and water on the fluorapatite (100) surface.
    Pareek A; Torrelles X; Angermund K; Rius J; Magdans U; Gies H
    Langmuir; 2009 Feb; 25(3):1453-8. PubMed ID: 19118469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of novel methacrylate based adsorbents and their sorptive properties towards p-nitrophenol from aqueous solutions.
    Erdem M; Yüksel E; Tay T; Cimen Y; Türk H
    J Colloid Interface Sci; 2009 May; 333(1):40-8. PubMed ID: 19217119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative coupling and the irreversible adsorption of phenol by graphite.
    de Oliveira Pimenta AC; Kilduff JE
    J Colloid Interface Sci; 2006 Jan; 293(2):278-89. PubMed ID: 16054157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new glance at ruthenium sorption mechanism on hydroxy, carbonate, and fluor apatites: Analytical and structural studies.
    Tõnsuaadu K; Gruselle M; Villain F; Thouvenot R; Peld M; Mikli V; Traksmaa R; Gredin P; Carrier X; Salles L
    J Colloid Interface Sci; 2006 Dec; 304(2):283-91. PubMed ID: 17027813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced adsorption of phenol from water by a novel polar post-crosslinked polymeric adsorbent.
    Zeng X; Fan Y; Wu G; Wang C; Shi R
    J Hazard Mater; 2009 Sep; 169(1-3):1022-8. PubMed ID: 19443106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polanyi-based models for the adsorption of naphthalene from aqueous solutions onto nonpolar polymeric adsorbents.
    Long C; Li A; Wu H; Liu F; Zhang Q
    J Colloid Interface Sci; 2008 Mar; 319(1):12-8. PubMed ID: 18082173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of phosphate from water by a Fe-Mn binary oxide adsorbent.
    Zhang G; Liu H; Liu R; Qu J
    J Colloid Interface Sci; 2009 Jul; 335(2):168-74. PubMed ID: 19406416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.