These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 18986672)

  • 21. Surface properties of SAC and its adsorption mechanisms for phenol and nitrobenzene.
    Li D; Wu Y; Feng L; Zhang L
    Bioresour Technol; 2012 Jun; 113():121-6. PubMed ID: 22446048
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Competitive and cooperative adsorption behaviors of phenol and aniline onto nonpolar macroreticular adsorbents.
    Zhang WM; Chen JL; Pan BC; Zhang QX
    J Environ Sci (China); 2005; 17(4):529-34. PubMed ID: 16158573
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adsorbents based on carbon microfibers and carbon nanofibers for the removal of phenol and lead from water.
    Chakraborty A; Deva D; Sharma A; Verma N
    J Colloid Interface Sci; 2011 Jul; 359(1):228-39. PubMed ID: 21507421
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The removal of phenol from aqueous solutions by adsorption using surfactant-modified bentonite and kaolinite.
    Alkaram UF; Mukhlis AA; Al-Dujaili AH
    J Hazard Mater; 2009 Sep; 169(1-3):324-32. PubMed ID: 19464105
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Retention of fluoride ions from aqueous solution using porous hydroxyapatite. Structure and conduction properties.
    Hammari LE; Laghzizil A; Barboux P; Lahlil K; Saoiabi A
    J Hazard Mater; 2004 Oct; 114(1-3):41-4. PubMed ID: 15511572
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sorption of tartrate ions to lanthanum (III)-modified calcium fluor- and hydroxyapatite.
    Aissa A; Debbabi M; Gruselle M; Thouvenot R; Flambard A; Gredin P; Beaunier P; Tõnsuaadu K
    J Colloid Interface Sci; 2009 Feb; 330(1):20-8. PubMed ID: 18996541
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetic and equilibrium studies of phenol adsorption by natural and modified forms of the clinoptilolite.
    Sprynskyy M; Ligor T; Lebedynets M; Buszewski B
    J Hazard Mater; 2009 Sep; 169(1-3):847-54. PubMed ID: 19423221
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simultaneous adsorption of Cd2+ and phenol on modified N-doped carbon nanotubes: experimental and DFT studies.
    Diaz-Flores PE; López-Urías F; Terrones M; Rangel-Mendez JR
    J Colloid Interface Sci; 2009 Jun; 334(2):124-31. PubMed ID: 19403143
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions.
    Ijagbemi CO; Baek MH; Kim DS
    J Hazard Mater; 2009 Jul; 166(1):538-46. PubMed ID: 19131158
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sorption of uranium (VI) on homoionic sodium smectite experimental study and surface complexation modeling.
    Korichi S; Bensmaili A
    J Hazard Mater; 2009 Sep; 169(1-3):780-93. PubMed ID: 19428178
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation.
    Altenor S; Carene B; Emmanuel E; Lambert J; Ehrhardt JJ; Gaspard S
    J Hazard Mater; 2009 Jun; 165(1-3):1029-39. PubMed ID: 19118948
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Production of ultra-fine bioresorbable carbonated hydroxyapatite.
    Murugan R; Ramakrishna S
    Acta Biomater; 2006 Mar; 2(2):201-6. PubMed ID: 16701878
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phase transformations, ion-exchange, adsorption, and dissolution processes in aquatic fluorapatite systems.
    Bengtsson A; Shchukarev A; Persson P; Sjöberg S
    Langmuir; 2009 Feb; 25(4):2355-62. PubMed ID: 19140703
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On the kinetics of apatite growth on substrates under physiological conditions.
    Prakash KH; Kumar R; Yu SC; Khor KA; Cheang P
    Langmuir; 2006 Jan; 22(1):269-76. PubMed ID: 16378431
    [TBL] [Abstract][Full Text] [Related]  

  • 35. EDTA impact on Cd2+ migration in apatite-water system.
    Tõnsuaadu K; Viipsi K; Trikkel A
    J Hazard Mater; 2008 Jun; 154(1-3):491-7. PubMed ID: 18054159
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The importance of particle size in porous titanium and nonporous counterparts for surface energy and its impact on apatite formation.
    Chen XB; Li YC; Hodgson PD; Wen C
    Acta Biomater; 2009 Jul; 5(6):2290-302. PubMed ID: 19307162
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tetracycline-loaded biomimetic apatite: an adsorption study.
    Cazalbou S; Bertrand G; Drouet C
    J Phys Chem B; 2015 Feb; 119(7):3014-24. PubMed ID: 25606667
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Treatment of phenol and p-cresol in aqueous solution by adsorption using a carbonylated hypercrosslinked polymeric adsorbent.
    Huang J
    J Hazard Mater; 2009 Sep; 168(2-3):1028-34. PubMed ID: 19342163
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison between the loading capacities of columns packed with partially and totally porous fine particles. What is the effective surface area available for adsorption?
    Gritti F; Guiochon G
    J Chromatogr A; 2007 Dec; 1176(1-2):107-22. PubMed ID: 18001756
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phenol degradation in water through a heterogeneous photo-Fenton process catalyzed by Fe-treated laponite.
    Iurascu B; Siminiceanu I; Vione D; Vicente MA; Gil A
    Water Res; 2009 Mar; 43(5):1313-22. PubMed ID: 19138784
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.