These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 18986888)

  • 41. High Q printed helical resonators for oscillators and filters.
    Everard JK; Broomfield CD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Sep; 54(9):1741-50. PubMed ID: 17941381
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The determination of electrical parameters of quartz crystal resonators with the consideration of dissipation.
    Wang J; Zhao W; Du J
    Ultrasonics; 2006 Dec; 44 Suppl 1():e869-73. PubMed ID: 16843512
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of internal resistance of a Helmholtz resonator on acoustic energy reduction in enclosures.
    Yu G; Li D; Cheng L
    J Acoust Soc Am; 2008 Dec; 124(6):3534-43. PubMed ID: 19206783
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Conceptual design of a high-Q, 3.4-GHz thin film quartz resonator.
    Patel MS; Yong YK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 May; 56(5):912-20. PubMed ID: 19473909
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Analysis of rosen piezoelectric transformers with a varying cross-section.
    Xue H; Yang J; Hu Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1632-9. PubMed ID: 18986953
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An ultra-compact and low-power oven-controlled crystal oscillator design for precision timing applications.
    Lim J; Kim H; Jackson T; Choi K; Kenny D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Sep; 57(9):1906-14. PubMed ID: 20875980
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thermal transient model of a crystal resonator employing thickness-shear vibrations.
    Shmaliy YS; Kurochka OH; Sokolinskiy EG; Rudnev OE
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(6):1396-406. PubMed ID: 18244335
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Up-converted 1/f PM and AM noise in linear HBT amplifiers.
    Ferre-Pikal ES; Savage FH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1698-704. PubMed ID: 18986914
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Demonstration of a wireless, self-powered, electroacoustic liner system.
    Phipps A; Liu F; Cattafesta L; Sheplak M; Nishida T
    J Acoust Soc Am; 2009 Feb; 125(2):873-81. PubMed ID: 19206864
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of electromagnetic radiation on the Q of quartz resonators.
    Yong YK; Patel M; Vig J; Ballato A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):353-60. PubMed ID: 19251522
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Design and properties of STW asynchronous resonators on quartz.
    Soluch W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Feb; 54(2):413-7. PubMed ID: 17328338
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Volume dependence in Handel's model of quartz crystal resonator noise.
    Sthal F; Devel M; Ghosh S; Imbaud J; Cibiel G; Bourquin R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Sep; 60(9):1971-7. PubMed ID: 24658728
    [TBL] [Abstract][Full Text] [Related]  

  • 53. User-friendly, miniature biosensor flow cell for fragile high fundamental frequency quartz crystal resonators.
    Sagmeister BP; Graz IM; Schwödiauer R; Gruber H; Bauer S
    Biosens Bioelectron; 2009 Apr; 24(8):2643-8. PubMed ID: 19231152
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Modelling for the robust design of layered resonators for ultrasonic particle manipulation.
    Hill M; Townsend RJ; Harris NR
    Ultrasonics; 2008 Nov; 48(6-7):521-8. PubMed ID: 18664398
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Resonances and energy trapping in AT-cut quartz resonators operating with fast shear modes driven by lateral electric fields produced by surface electrodes.
    Ma T; Wang J; Du J; Yang J
    Ultrasonics; 2015 May; 59():14-20. PubMed ID: 25660411
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A freestanding oscillator for resonant-ultrasound microscopy.
    Tian J; Ogi H; Tada T; Hirao M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):499-502. PubMed ID: 18334356
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Thickness-shear mode shapes and mass-frequency influence surface of a circular and electroded AT-cut quartz resonator.
    Yong YK; Stewart JT; Detaint J; Zarka A; Capelle B; Zheng Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(5):609-17. PubMed ID: 18267672
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A multiple degree of freedom electromechanical Helmholtz resonator.
    Liu F; Horowitz S; Nishida T; Cattafesta L; Sheplak M
    J Acoust Soc Am; 2007 Jul; 122(1):291-301. PubMed ID: 17614489
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Langasite as a piezoelectric material for near-field microscopy resonant cantilevers.
    Douchet G; Sthal F; Leblois T; Bigler E
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Nov; 57(11):2531-6. PubMed ID: 21041140
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Vibration absorption using non-dissipative complex attachments with impacts and parametric stiffness.
    Roveri N; Carcaterra A; Akay A
    J Acoust Soc Am; 2009 Nov; 126(5):2306-14. PubMed ID: 19894813
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.