These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Bulk acoustic wave filters synthesis and optimization for multi-standard communication terminals. Giraud S; Bila S; Chatras M; Cros D; Aubourg M IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):52-8. PubMed ID: 20040426 [TBL] [Abstract][Full Text] [Related]
8. A resonance-bending mode magnetoelectric-coupling equivalent circuit. Guo M; Dong S IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Nov; 56(11):2578-86. PubMed ID: 19942545 [TBL] [Abstract][Full Text] [Related]
9. The peculiarities of propagation of the backward acoustic waves in piezoelectric plates. Zaitsev BD; Kuznetsova IE; Borodina IA; Teplykh AA IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1660-4. PubMed ID: 18986956 [TBL] [Abstract][Full Text] [Related]
10. Membrane analogy of the Stevens-Tiersten equation for essentially thickness modes in plate quartz resonators. Zhang W; Yang Z; Yang J IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1665-8. PubMed ID: 18986957 [TBL] [Abstract][Full Text] [Related]
11. Transmitting electric energy through a closed elastic wall by acoustic waves and piezoelectric transducers. Yang Z; Guo S; Yang J IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1380-6. PubMed ID: 18599426 [TBL] [Abstract][Full Text] [Related]
12. Compound piezoelectric cylindrical resonators as sensors of the rheological parameters of viscoelastic media. Kiełczyński P; Szalewski M IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Jun; 54(6):1199-206. PubMed ID: 17571818 [TBL] [Abstract][Full Text] [Related]
13. A lumped-circuit model for the radiation impedance of a circular piston in a rigid baffle. Bozkurt A IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Sep; 55(9):2046-52. PubMed ID: 18986901 [TBL] [Abstract][Full Text] [Related]
14. Dedicated finite elements for electrode thin films on quartz resonators. Srivastava SA; Yong YK; Tanaka M; Imai T IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1686-97. PubMed ID: 18986913 [TBL] [Abstract][Full Text] [Related]
15. Quantitative modeling of coupling-induced resonance frequency shift in microring resonators. Li Q; Soltani M; Atabaki AH; Yegnanarayanan S; Adibi A Opt Express; 2009 Dec; 17(26):23474-87. PubMed ID: 20052055 [TBL] [Abstract][Full Text] [Related]
16. Super-high-frequency two-port AlN contour-mode resonators for RF applications. Rinaldi M; Zuniga C; Zuo C; Piazza G IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):38-45. PubMed ID: 20040424 [TBL] [Abstract][Full Text] [Related]
17. Lead-free piezoelectric-metal-cavity (PMC) actuators. Lam KH; Lin DM; Kwok KW; Lai-Wa Chan H IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1682-5. PubMed ID: 18986912 [TBL] [Abstract][Full Text] [Related]
18. Experimental investigation of acoustic substrate losses in 1850-MHz thin film BAW resonators. Pensala T; Thalhammer R; Dekker J; Kaitila J IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Nov; 56(11):2544-52. PubMed ID: 19942540 [TBL] [Abstract][Full Text] [Related]
19. Quartz crystal microbalance based on torsional piezoelectric resonators. Bücking W; Du B; Turshatov A; König AM; Reviakine I; Bode B; Johannsmann D Rev Sci Instrum; 2007 Jul; 78(7):074903. PubMed ID: 17672786 [TBL] [Abstract][Full Text] [Related]
20. Modeling of surface acoustic wave strain sensors using coupling-of-modes analysis. Mc Cormack B; Geraghty D; O'Mahony M IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Nov; 58(11):2461-8. PubMed ID: 22083778 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]