These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 1898692)

  • 1. Binding of preformed xenoantibodies to porcine bioprosthetic valves.
    Sanchez JA; Marboe CC; Auteri JS; Jeevanandum V; Edwards NM; Berger CL; Rose EA
    Ann Thorac Surg; 1991 Jan; 51(1):30-3. PubMed ID: 1898692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degeneration of bioprosthetic heart valve cusp and wall tissues is initiated during tissue preparation: an ultrastructural study.
    Simionescu DT; Lovekamp JJ; Vyavahare NR
    J Heart Valve Dis; 2003 Mar; 12(2):226-34. PubMed ID: 12701796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decellularized GGTA1-KO pig heart valves do not bind preformed human xenoantibodies.
    Ramm R; Niemann H; Petersen B; Haverich A; Hilfiker A
    Basic Res Cardiol; 2016 Jul; 111(4):39. PubMed ID: 27154491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formaldehyde replaces glutaraldehyde in porcine bioprosthetic heart valves.
    McClurg WM; Lawford PV; Hughes H; Rogers S
    J Heart Valve Dis; 1996 May; 5(3):343-7. PubMed ID: 8793688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Platelet adherence to bioprosthetic cardiac valves.
    Magilligan DJ; Oyama C; Klein S; Riddle JM; Smith D
    Am J Cardiol; 1984 Mar; 53(7):945-9. PubMed ID: 6422734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degenerative processes in bioprosthetic mitral valves in juvenile pigs.
    Honge JL; Funder JA; Pedersen TB; Kronborg MB; Hasenkam JM
    J Cardiothorac Surg; 2011 May; 6():72. PubMed ID: 21569636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of fixation back pressure and antimineralization treatment on the morphology of porcine aortic bioprosthetic valves.
    Flomenbaum MA; Schoen FJ
    J Thorac Cardiovasc Surg; 1993 Jan; 105(1):154-64. PubMed ID: 8419696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of efficacy of 2-amino oleic acid for inhibition of calcification of glutaraldehyde-pretreated porcine bioprosthetic heart valves.
    Chen W; Schoen FJ; Levy RJ
    Circulation; 1994 Jul; 90(1):323-9. PubMed ID: 8026014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preseeding with autologous fibroblasts improves endothelialization of glutaraldehyde-fixed porcine aortic valves.
    Gulbins H; Goldemund A; Anderson I; Haas U; Uhlig A; Meiser B; Reichart B
    J Thorac Cardiovasc Surg; 2003 Mar; 125(3):592-601. PubMed ID: 12658201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observations on glutaraldehyde-treated heterologous cardiac valves.
    Bodnar E; Olsen EG; Ross DN
    Thorax; 1979 Dec; 34(6):794-800. PubMed ID: 120617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reducing immunoreactivity of porcine bioprosthetic heart valves by genetically-deleting three major glycan antigens, GGTA1/β4GalNT2/CMAH.
    Zhang R; Wang Y; Chen L; Wang R; Li C; Li X; Fang B; Ren X; Ruan M; Liu J; Xiong Q; Zhang L; Jin Y; Zhang M; Liu X; Li L; Chen Q; Pan D; Li R; Cooper DKC; Yang H; Dai Y
    Acta Biomater; 2018 May; 72():196-205. PubMed ID: 29631050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human antibody recognition of xenogeneic antigens (NeuGc and Gal) on porcine heart valves: could genetically modified pig heart valves reduce structural valve deterioration?
    Lee W; Long C; Ramsoondar J; Ayares D; Cooper DK; Manji RA; Hara H
    Xenotransplantation; 2016 Sep; 23(5):370-80. PubMed ID: 27511593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of fixation conditions on the performance of glutaraldehyde-treated porcine aortic valves: towards a more scientific basis.
    Broom ND; Thomson FJ
    Thorax; 1979 Apr; 34(2):166-76. PubMed ID: 113899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viscoelasticity of dynamically fixed bioprosthetic valves. II. Effect of glutaraldehyde concentration.
    Duncan AC; Boughner D; Vesely I
    J Thorac Cardiovasc Surg; 1997 Feb; 113(2):302-10. PubMed ID: 9040624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the cross-linking characteristics of porcine heart valves fixed with glutaraldehyde or epoxy compounds.
    Sung HW; Shen SH; Tu R; Lin D; Hata C; Noishiki Y; Tomizawa Y; Quijano RC
    ASAIO J; 1993; 39(3):M532-6. PubMed ID: 8268592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biaxial strain distributions in explanted porcine bioprosthetic valves.
    Adamczyk MM; Vesely I
    J Heart Valve Dis; 2002 Sep; 11(5):688-95. PubMed ID: 12358406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analysis of glutaraldehyde-preserved porcine xenografts and fresh or glutaraldehyde-treated human aortic valves by holographic interferometry.
    Geiger AW; Zarubin AM; Deiwick M; Asfour B; Fahrenkamp A; Hertel M; von Bally G; Scheld HH
    Cardiovasc Surg; 1994 Dec; 2(6):693-7. PubMed ID: 7858986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative study of the L-hydro process and glutaraldehyde preservation.
    Nina VJ; Pomerantzeff PM; Casagrande IS; Cheung DT; Brandão CM; Oliveira SA
    Asian Cardiovasc Thorac Ann; 2005 Sep; 13(3):203-7. PubMed ID: 16112988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of glutaraldehyde fixation and valve constraint conditions on porcine aortic valve leaflet coaptation.
    Broom ND; Marra D
    Thorax; 1982 Aug; 37(8):620-6. PubMed ID: 6817442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porcine aortic valve bioprostheses: morphologic and functional considerations.
    Hilbert SL; Ferrans VJ
    J Long Term Eff Med Implants; 1992; 2(2-3):99-112. PubMed ID: 10148319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.