These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 18986941)
1. Application of the Biot model to ultrasound in bone: inverse problem. Sebaa N; Fellah ZA; Fellah M; Ogam E; Mitri FG; Depollier C; Lauriks W IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1516-23. PubMed ID: 18986941 [TBL] [Abstract][Full Text] [Related]
2. Application of the biot model to ultrasound in bone: direct problem. Fellah ZA; Sebaa N; Fellah M; Mitri FG; Ogam E; Lauriks W; Depollier C IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1508-15. PubMed ID: 18986940 [TBL] [Abstract][Full Text] [Related]
3. Ultrasonic characterization of human cancellous bone using the Biot theory: inverse problem. Sebaa N; Fellah ZE; Fellah M; Ogam E; Wirgin A; Mitri FG; Depollier C; Lauriks W J Acoust Soc Am; 2006 Oct; 120(4):1816-24. PubMed ID: 17069280 [TBL] [Abstract][Full Text] [Related]
4. Effects of structural anisotropy of cancellous bone on speed of ultrasonic fast waves in the bovine femur. Mizuno K; Matsukawa M; Otani T; Takada M; Mano I; Tsujimoto T IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1480-7. PubMed ID: 18986937 [TBL] [Abstract][Full Text] [Related]
5. Ultrasonic wave propagation in human cancellous bone: application of Biot theory. Fellah ZE; Chapelon JY; Berger S; Lauriks W; Depollier C J Acoust Soc Am; 2004 Jul; 116(1):61-73. PubMed ID: 15295965 [TBL] [Abstract][Full Text] [Related]
6. Transient ultrasound propagation in porous media using Biot theory and fractional calculus: application to human cancellous bone. Fellah M; Fellah ZE; Mitri FG; Ogam E; Depollier C J Acoust Soc Am; 2013 Apr; 133(4):1867-81. PubMed ID: 23556556 [TBL] [Abstract][Full Text] [Related]
7. Ultrasound and the biomechanical competence of bone. Nicholson PF IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1539-45. PubMed ID: 18986944 [TBL] [Abstract][Full Text] [Related]
8. Relationship between ultrasonic parameters and apparent trabecular bone elastic modulus: a numerical approach. Haïat G; Padilla F; Svrcekova M; Chevalier Y; Pahr D; Peyrin F; Laugier P; Zysset P J Biomech; 2009 Sep; 42(13):2033-9. PubMed ID: 19646703 [TBL] [Abstract][Full Text] [Related]
9. The measurement of broadband ultrasonic attenuation in cancellous bone--a review of the science and technology. Langton CM; Njeh CF IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1546-54. PubMed ID: 18986945 [TBL] [Abstract][Full Text] [Related]
10. Ultrasonic pulse waves in cancellous bone analyzed by finite-difference time-domain methods. Hosokawa A Ultrasonics; 2006 Dec; 44 Suppl 1():e227-31. PubMed ID: 16844171 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous estimation of cortical bone thickness and acoustic wave velocity using a multivariable optimization approach: Bone phantom and in-vitro study. Tasinkevych Y; Podhajecki J; Falińska K; Litniewski J Ultrasonics; 2016 Feb; 65():105-12. PubMed ID: 26522955 [TBL] [Abstract][Full Text] [Related]
12. Comparison of mechanical and ultrasound elastic modulus of ovine tibial cortical bone. Grant CA; Wilson LJ; Langton C; Epari D Med Eng Phys; 2014 Jul; 36(7):869-74. PubMed ID: 24793408 [TBL] [Abstract][Full Text] [Related]
13. Influence of density, elasticity, and structure on ultrasound transmission through trabecular bone cylinders. Cavani F; Giavaresi G; Fini M; Bertoni L; de Terlizzi F; Barkmann R; Cane V IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1465-72. PubMed ID: 18986935 [TBL] [Abstract][Full Text] [Related]
14. Ultrasonic characterization of human cancellous bone in vitro using three different apparent backscatter parameters in the frequency range 0.6-15.0 mhz. Hoffmeister BK; Johnson DP; Janeski JA; Keedy DA; Steinert BW; Viano AM; Kaste SC IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1442-52. PubMed ID: 18986933 [TBL] [Abstract][Full Text] [Related]
15. Distribution of longitudinal wave properties in bovine cortical bone in vitro. Yamato Y; Matsukawa M; Otani T; Yamazaki K; Nagano A Ultrasonics; 2006 Dec; 44 Suppl 1():e233-7. PubMed ID: 16860358 [TBL] [Abstract][Full Text] [Related]
16. Prediction of density and mechanical properties of human trabecular bone in vitro by using ultrasound transmission and backscattering measurements at 0.2-6.7 MHz frequency range. Hakulinen MA; Day JS; Töyräs J; Timonen M; Kröger H; Weinans H; Kiviranta I; Jurvelin JS Phys Med Biol; 2005 Apr; 50(8):1629-42. PubMed ID: 15815086 [TBL] [Abstract][Full Text] [Related]
17. Ultrasonic backscatter from cancellous bone: the apparent backscatter transfer function. Hoffmeister BK; Mcpherson JA; Smathers MR; Spinolo PL; Sellers ME IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Dec; 62(12):2115-25. PubMed ID: 26683412 [TBL] [Abstract][Full Text] [Related]
18. The correlation between the SOS in trabecular bone and stiffness and density studied by finite-element analysis. Goossens L; Vanderoost J; Jaecques S; Boonen S; D'hooge J; Lauriks W; Van der Perre G IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1234-42. PubMed ID: 18599411 [TBL] [Abstract][Full Text] [Related]
19. Empirical angle-dependent Biot and MBA models for acoustic anisotropy in cancellous bone. Lee KI; Hughes ER; Humphrey VF; Leighton TG; Choi MJ Phys Med Biol; 2007 Jan; 52(1):59-73. PubMed ID: 17183128 [TBL] [Abstract][Full Text] [Related]
20. Ultrashort echo time magnetization transfer (UTE-MT) imaging of cortical bone. Chang EY; Bae WC; Shao H; Biswas R; Li S; Chen J; Patil S; Healey R; D'Lima DD; Chung CB; Du J NMR Biomed; 2015 Jul; 28(7):873-80. PubMed ID: 25981914 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]