These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 18986944)

  • 21. Robust bone detection in ultrasound using combined strain imaging and envelope signal power detection.
    Hussain MA; Hodgson A; Abugharbieh R
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):356-63. PubMed ID: 25333138
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploration of trabecular bone nonlinear elasticity using time-of-flight modulation.
    Renaud G; Calle S; Remenieras JP; Defontaine M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1497-507. PubMed ID: 18986939
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The influence of the boundary conditions on longitudinal wave propagation in a viscoelastic medium.
    Eskandari H; Baghani A; Salcudean SE; Rohling R
    Phys Med Biol; 2009 Jul; 54(13):3997-4017. PubMed ID: 19502703
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transversely isotropic elasticity imaging of cancellous bone.
    Shore SW; Barbone PE; Oberai AA; Morgan EF
    J Biomech Eng; 2011 Jun; 133(6):061002. PubMed ID: 21744922
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Wavelet-Based Processing method for simultaneously determining ultrasonic velocity and material thickness.
    Loosvelt M; Lasaygues P
    Ultrasonics; 2011 Apr; 51(3):325-39. PubMed ID: 21094965
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determination of elastic coefficients of bone and composite materials by acoustic immersion technique.
    Goldmann T; Seiner H; Landa M
    Technol Health Care; 2006; 14(4-5):219-32. PubMed ID: 17065745
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Estimation of multipath transmission parameters for quantitative ultrasound measurements of bone.
    Dencks S; Schmitz G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Sep; 60(9):1884-95. PubMed ID: 24658719
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sensitivity of qus parameters to controlled variations of bone strength assessed with a cellular model.
    Haiat G; Padilla F; Laugier P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1488-96. PubMed ID: 18986938
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relationship between ultrasonic parameters and apparent trabecular bone elastic modulus: a numerical approach.
    Haïat G; Padilla F; Svrcekova M; Chevalier Y; Pahr D; Peyrin F; Laugier P; Zysset P
    J Biomech; 2009 Sep; 42(13):2033-9. PubMed ID: 19646703
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrasonic scattering from cancellous bone: a review.
    Wear KA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1432-41. PubMed ID: 18986932
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of density and mechanical properties of human trabecular bone in vitro by using ultrasound transmission and backscattering measurements at 0.2-6.7 MHz frequency range.
    Hakulinen MA; Day JS; Töyräs J; Timonen M; Kröger H; Weinans H; Kiviranta I; Jurvelin JS
    Phys Med Biol; 2005 Apr; 50(8):1629-42. PubMed ID: 15815086
    [TBL] [Abstract][Full Text] [Related]  

  • 32. BEM simulations of Rayleigh wave propagation in media with microstructural effects: Application to long bones.
    Papacharalampopoulos A; Vavva MG; Protopappas VC; Polyzos D; Fotiadis DI
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3535-8. PubMed ID: 21097039
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bidirectional axial transmission can improve accuracy and precision of ultrasonic velocity measurement in cortical bone: a validation on test materials.
    Bossy E; Talmant M; Defontaine M; Patat F; Laugier P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jan; 51(1):71-9. PubMed ID: 14995018
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Viscoelastic parameter estimation based on spectral analysis.
    Eskandari H; Salcudean SE; Rohling R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1611-25. PubMed ID: 18986951
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Model-based estimation of quantitative ultrasound variables at the proximal femur.
    Dencks S; Barkmann R; Padilla F; Laugier P; Schmitz G; Glüer CC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1304-15. PubMed ID: 18599418
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The prospects of estimating trabecular bone tissue properties from the combination of ultrasound, dual-energy X-ray absorptiometry, microcomputed tomography, and microfinite element analysis.
    van Lenthe GH; van den Bergh JP; Hermus AR; Huiskes R
    J Bone Miner Res; 2001 Mar; 16(3):550-5. PubMed ID: 11277273
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Topography of acoustical properties of long bones: from biomechanical studies to bone health assessment.
    Tatarinov A; Sarvazyan A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1287-97. PubMed ID: 18599416
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The ability of quantitative ultrasound to predict the mechanical properties of trabecular bone under different strain rates.
    Han S; Medige J; Faran K; Feng Z; Ziv I
    Med Eng Phys; 1997 Dec; 19(8):742-7. PubMed ID: 9450259
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrasonic pulse waves in cancellous bone analyzed by finite-difference time-domain methods.
    Hosokawa A
    Ultrasonics; 2006 Dec; 44 Suppl 1():e227-31. PubMed ID: 16844171
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of a numerical cancellous bone model for finite-difference time-domain simulations of ultrasound propagation.
    Hosokawa A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1219-33. PubMed ID: 18599410
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.