These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 18987049)
1. Role of neuronal NO synthase in regulating vascular superoxide levels and mitogen-activated protein kinase phosphorylation. Zhang GX; Kimura S; Murao K; Shimizu J; Matsuyoshi H; Takaki M Cardiovasc Res; 2009 Feb; 81(2):389-99. PubMed ID: 18987049 [TBL] [Abstract][Full Text] [Related]
2. Opposing roles of p47phox in basal versus angiotensin II-stimulated alterations in vascular O2- production, vascular tone, and mitogen-activated protein kinase activation. Li JM; Wheatcroft S; Fan LM; Kearney MT; Shah AM Circulation; 2004 Mar; 109(10):1307-13. PubMed ID: 14993144 [TBL] [Abstract][Full Text] [Related]
3. A defect of neuronal nitric oxide synthase increases xanthine oxidase-derived superoxide anion and attenuates the control of myocardial oxygen consumption by nitric oxide derived from endothelial nitric oxide synthase. Kinugawa S; Huang H; Wang Z; Kaminski PM; Wolin MS; Hintze TH Circ Res; 2005 Feb; 96(3):355-62. PubMed ID: 15637297 [TBL] [Abstract][Full Text] [Related]
4. c-Src induces phosphorylation and translocation of p47phox: role in superoxide generation by angiotensin II in human vascular smooth muscle cells. Touyz RM; Yao G; Schiffrin EL Arterioscler Thromb Vasc Biol; 2003 Jun; 23(6):981-7. PubMed ID: 12663375 [TBL] [Abstract][Full Text] [Related]
5. Vascular neuronal NO synthase is selectively upregulated by platelet-derived growth factor: involvement of the MEK/ERK pathway. Nakata S; Tsutsui M; Shimokawa H; Tamura M; Tasaki H; Morishita T; Suda O; Ueno S; Toyohira Y; Nakashima Y; Yanagihara N Arterioscler Thromb Vasc Biol; 2005 Dec; 25(12):2502-8. PubMed ID: 16224055 [TBL] [Abstract][Full Text] [Related]
6. NADPH oxidase-derived superoxide anion mediates angiotensin II-induced pressor effect via activation of p38 mitogen-activated protein kinase in the rostral ventrolateral medulla. Chan SH; Hsu KS; Huang CC; Wang LL; Ou CC; Chan JY Circ Res; 2005 Oct; 97(8):772-80. PubMed ID: 16151022 [TBL] [Abstract][Full Text] [Related]
7. Superoxide anion mediates angiotensin II-induced potentiation of contractile response to sympathetic stimulation. Lu C; Su LY; Lee RM; Gao YJ Eur J Pharmacol; 2008 Jul; 589(1-3):188-93. PubMed ID: 18538762 [TBL] [Abstract][Full Text] [Related]
8. Role of oxidative stress in the natriuresis induced by central administration of angiotensin II. Israel A; Arzola J; De Jesús S; Varela M J Renin Angiotensin Aldosterone Syst; 2009 Mar; 10(1):9-14. PubMed ID: 19286753 [TBL] [Abstract][Full Text] [Related]
10. Insulin-stimulated NAD(P)H oxidase activity increases migration of cultured vascular smooth muscle cells. Yang M; Foster E; Kahn AM Am J Hypertens; 2005 Oct; 18(10):1329-34. PubMed ID: 16202857 [TBL] [Abstract][Full Text] [Related]
11. P38 MAP kinase in valve interstitial cells is activated by angiotensin II or nitric oxide/peroxynitrite, but reduced by Toll-like receptor-2 stimulation. Rabkin SW; Lodhia P; Luong MW J Heart Valve Dis; 2009 Nov; 18(6):653-61. PubMed ID: 20099714 [TBL] [Abstract][Full Text] [Related]
12. Effect of high-salt diet on vascular relaxation and oxidative stress in mesenteric resistance arteries. Zhu J; Huang T; Lombard JH J Vasc Res; 2007; 44(5):382-90. PubMed ID: 17510561 [TBL] [Abstract][Full Text] [Related]
13. Effects of p38 MAPK Inhibitor on angiotensin II-dependent hypertension, organ damage, and superoxide anion production. Bao W; Behm DJ; Nerurkar SS; Ao Z; Bentley R; Mirabile RC; Johns DG; Woods TN; Doe CP; Coatney RW; Ohlstein JF; Douglas SA; Willette RN; Yue TL J Cardiovasc Pharmacol; 2007 Jun; 49(6):362-8. PubMed ID: 17577100 [TBL] [Abstract][Full Text] [Related]
14. Gene therapy of endothelial nitric oxide synthase and manganese superoxide dismutase restores delayed wound healing in type 1 diabetic mice. Luo JD; Wang YY; Fu WL; Wu J; Chen AF Circulation; 2004 Oct; 110(16):2484-93. PubMed ID: 15262829 [TBL] [Abstract][Full Text] [Related]
15. [Role of pp60c-src in mitogen-activated protein kinase activation of vascular smooth muscle cells]. Liu D; Lu JS; Yin XL Sheng Li Xue Bao; 2000 Dec; 52(6):483-6. PubMed ID: 11941412 [TBL] [Abstract][Full Text] [Related]
16. TGF-beta inhibits Ang II-induced MAPK p44/42 signaling in vascular smooth muscle cells by Ang II type 1 receptor downregulation. Meijering BD; van der Wouden EA; Pelgröm V; Henning RH; Sharma K; Deelman LE J Vasc Res; 2009; 46(5):459-68. PubMed ID: 19204403 [TBL] [Abstract][Full Text] [Related]
17. Angiotensin II suppresses growth arrest specific homeobox (Gax) expression via redox-sensitive mitogen-activated protein kinase (MAPK). Saito T; Itoh H; Yamashita J; Doi K; Chun TH; Tanaka T; Inoue M; Masatsugu K; Fukunaga Y; Sawada N; Sakaguchi S; Arai H; Tojo K; Tajima N; Hosoya T; Nakao K Regul Pept; 2005 Apr; 127(1-3):159-67. PubMed ID: 15680482 [TBL] [Abstract][Full Text] [Related]
18. Glucose-6 phosphate dehydrogenase deficiency decreases the vascular response to angiotensin II. Matsui R; Xu S; Maitland KA; Hayes A; Leopold JA; Handy DE; Loscalzo J; Cohen RA Circulation; 2005 Jul; 112(2):257-63. PubMed ID: 15998684 [TBL] [Abstract][Full Text] [Related]
19. Role of the actin cytoskeleton in angiotensin II signaling in human vascular smooth muscle cells. Touyz RM; Yao G; Schiffrin EL Can J Physiol Pharmacol; 2005 Jan; 83(1):91-7. PubMed ID: 15759055 [TBL] [Abstract][Full Text] [Related]