BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 1898733)

  • 1. Functional limits of conformation, hydrophobicity, and steric constraints in prokaryotic signal peptide cleavage regions. Wild type transport by a simple polymeric signal sequence.
    Laforet GA; Kendall DA
    J Biol Chem; 1991 Jan; 266(2):1326-34. PubMed ID: 1898733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signal peptide cleavage regions. Functional limits on length and topological implications.
    Jain RG; Rusch SL; Kendall DA
    J Biol Chem; 1994 Jun; 269(23):16305-10. PubMed ID: 8206936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical and conformational properties of synthetic idealized signal sequences parallel their biological function.
    Izard JW; Doughty MB; Kendall DA
    Biochemistry; 1995 Aug; 34(31):9904-12. PubMed ID: 7632690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymeric sequences reveal a functional interrelationship between hydrophobicity and length of signal peptides.
    Chou MM; Kendall DA
    J Biol Chem; 1990 Feb; 265(5):2873-80. PubMed ID: 2154463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signal peptide subsegments are not always functionally interchangeable. M13 procoat hydrophobic core fails to transport alkaline phosphatase in Escherichia coli.
    Laforet GA; Kaiser ET; Kendall DA
    J Biol Chem; 1989 Aug; 264(24):14478-85. PubMed ID: 2668291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of signal peptide changes on the extracellular processing of streptokinase from Escherichia coli: requirement for secondary structure at the cleavage junction.
    Pratap J; Dikshit KL
    Mol Gen Genet; 1998 May; 258(4):326-33. PubMed ID: 9648736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Titration of protein transport activity by incremental changes in signal peptide hydrophobicity.
    Doud SK; Chou MM; Kendall DA
    Biochemistry; 1993 Feb; 32(5):1251-6. PubMed ID: 8448135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signal sequences containing multiple aromatic residues.
    Rusch SL; Kendall DA
    J Mol Biol; 1992 Mar; 224(1):77-85. PubMed ID: 1548710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Treponema pallidum subspecies pallidum genes encoding signal peptides and membrane-spanning sequences using a novel alkaline phosphatase expression vector.
    Blanco DR; Giladi M; Champion CI; Haake DA; Chikami GK; Miller JN; Lovett MA
    Mol Microbiol; 1991 Oct; 5(10):2405-15. PubMed ID: 1791755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural features in the NH2-terminal region of a model eukaryotic signal peptide influence the site of its cleavage by signal peptidase.
    Nothwehr SF; Gordon JI
    J Biol Chem; 1990 Oct; 265(28):17202-8. PubMed ID: 2120214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A de novo designed signal peptide cleavage cassette functions in vivo.
    Nilsson I; von Heijne G
    J Biol Chem; 1991 Feb; 266(6):3408-10. PubMed ID: 1995603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of protein translocation across the membrane by specific mutations in the hydrophobic region of the signal peptide.
    Goldstein J; Lehnhardt S; Inouye M
    J Bacteriol; 1990 Mar; 172(3):1225-31. PubMed ID: 2407717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Residues flanking the COOH-terminal C-region of a model eukaryotic signal peptide influence the site of its cleavage by signal peptidase and the extent of coupling of its co-translational translocation and proteolytic processing in vitro.
    Nothwehr SF; Hoeltzli SD; Allen KL; Lively MO; Gordon JI
    J Biol Chem; 1990 Dec; 265(35):21797-803. PubMed ID: 2123875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signal peptides: exquisitely designed transport promoters.
    Izard JW; Kendall DA
    Mol Microbiol; 1994 Sep; 13(5):765-73. PubMed ID: 7815936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different sec-requirements for signal peptide cleavage and protein translocation in a model E. coli protein.
    Nilsson IM; Gafvelin G; von Heijne G
    FEBS Lett; 1993 Feb; 318(1):7-10. PubMed ID: 8436228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Processing of Escherichia coli alkaline phosphatase: role of the primary structure of the signal peptide cleavage region.
    Karamyshev AL; Karamysheva ZN; Kajava AV; Ksenzenko VN; Nesmeyanova MA
    J Mol Biol; 1998 Apr; 277(4):859-70. PubMed ID: 9545377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of an export-defective protein by a highly hydrophobic signal peptide.
    Rusch SL; Kendall DA
    J Biol Chem; 1994 Jan; 269(2):1243-8. PubMed ID: 8288586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signal peptide determinants of SecA binding and stimulation of ATPase activity.
    Wang L; Miller A; Kendall DA
    J Biol Chem; 2000 Apr; 275(14):10154-9. PubMed ID: 10744698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Escherichia coli signal peptides direct inefficient secretion of an outer membrane protein (OmpA) and periplasmic proteins (maltose-binding protein, ribose-binding protein, and alkaline phosphatase) in Bacillus subtilis.
    Collier DN
    J Bacteriol; 1994 May; 176(10):3013-20. PubMed ID: 8188602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of helix stability in wild-type and mutant LamB signal sequences.
    Bruch MD; Gierasch LM
    J Biol Chem; 1990 Mar; 265(7):3851-8. PubMed ID: 2406265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.