These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 18987754)

  • 21. Bacterial regulon modeling and prediction based on systematic cis regulatory motif analyses.
    Liu B; Zhou C; Li G; Zhang H; Zeng E; Liu Q; Ma Q
    Sci Rep; 2016 Mar; 6():23030. PubMed ID: 26975728
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Environmental selection of the feed-forward loop circuit in gene-regulation networks.
    Dekel E; Mangan S; Alon U
    Phys Biol; 2005 Jun; 2(2):81-8. PubMed ID: 16204860
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiple functions of a feed-forward-loop gene circuit.
    Wall ME; Dunlop MJ; Hlavacek WS
    J Mol Biol; 2005 Jun; 349(3):501-14. PubMed ID: 15890368
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Global analysis of gene transcription regulation in prokaryotes.
    Zhou D; Yang R
    Cell Mol Life Sci; 2006 Oct; 63(19-20):2260-90. PubMed ID: 16927028
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The hierarchic network of metal-response transcription factors in Escherichia coli.
    Yamamoto K
    Biosci Biotechnol Biochem; 2014; 78(5):737-47. PubMed ID: 25035972
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crosstalk and the Dynamical Modularity of Feed-Forward Loops in Transcriptional Regulatory Networks.
    Rowland MA; Abdelzaher A; Ghosh P; Mayo ML
    Biophys J; 2017 Apr; 112(8):1539-1550. PubMed ID: 28445746
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The incoherent feed-forward loop accelerates the response-time of the gal system of Escherichia coli.
    Mangan S; Itzkovitz S; Zaslaver A; Alon U
    J Mol Biol; 2006 Mar; 356(5):1073-81. PubMed ID: 16406067
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prokaryotic regulatory systems biology: Common principles governing the functional architectures of Bacillus subtilis and Escherichia coli unveiled by the natural decomposition approach.
    Freyre-González JA; Treviño-Quintanilla LG; Valtierra-Gutiérrez IA; Gutiérrez-Ríos RM; Alonso-Pavón JA
    J Biotechnol; 2012 Oct; 161(3):278-86. PubMed ID: 22728391
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Environmental conditions and transcriptional regulation in Escherichia coli: a physiological integrative approach.
    Martínez-Antonio A; Salgado H; Gama-Castro S; Gutiérrez-Ríos RM; Jiménez-Jacinto V; Collado-Vides J
    Biotechnol Bioeng; 2003 Dec; 84(7):743-9. PubMed ID: 14708114
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Genetic regulation of the heat-shock response in Escherichia coli].
    Ramírez Santos J; Solís Guzmán G; Gómez Eichelmann MC
    Rev Latinoam Microbiol; 2001; 43(1):51-63. PubMed ID: 17061571
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional organisation of Escherichia coli transcriptional regulatory network.
    Martínez-Antonio A; Janga SC; Thieffry D
    J Mol Biol; 2008 Aug; 381(1):238-47. PubMed ID: 18599074
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Network motifs are enriched with transcription factors whose transcripts have short half-lives.
    Wang E; Purisima E
    Trends Genet; 2005 Sep; 21(9):492-5. PubMed ID: 16026891
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multistability and oscillations in genetic control of metabolism.
    Oyarzún DA; Chaves M; Hoff-Hoffmeyer-Zlotnik M
    J Theor Biol; 2012 Feb; 295():139-53. PubMed ID: 22137968
    [TBL] [Abstract][Full Text] [Related]  

  • 34. From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli.
    Thieffry D; Huerta AM; Pérez-Rueda E; Collado-Vides J
    Bioessays; 1998 May; 20(5):433-40. PubMed ID: 9670816
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bridge and brick network motifs: identifying significant building blocks from complex biological systems.
    Huang CY; Cheng CY; Sun CT
    Artif Intell Med; 2007 Oct; 41(2):117-27. PubMed ID: 17825540
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcriptional regulatory networks in bacteria: from input signals to output responses.
    Seshasayee AS; Bertone P; Fraser GM; Luscombe NM
    Curr Opin Microbiol; 2006 Oct; 9(5):511-9. PubMed ID: 16942903
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcription of the ibpB heat-shock gene is under control of sigma(32)- and sigma(54)-promoters, a third regulon of heat-shock response.
    Kuczyńska-Wisńik D; Laskowska E; Taylor A
    Biochem Biophys Res Commun; 2001 Jun; 284(1):57-64. PubMed ID: 11374870
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The GlxR regulon of the amino acid producer Corynebacterium glutamicum: in silico and in vitro detection of DNA binding sites of a global transcription regulator.
    Kohl TA; Baumbach J; Jungwirth B; Pühler A; Tauch A
    J Biotechnol; 2008 Jul; 135(4):340-50. PubMed ID: 18573287
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Internal-sensing machinery directs the activity of the regulatory network in Escherichia coli.
    Martínez-Antonio A; Janga SC; Salgado H; Collado-Vides J
    Trends Microbiol; 2006 Jan; 14(1):22-7. PubMed ID: 16311037
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The GlxR regulon of the amino acid producer Corynebacterium glutamicum: Detection of the corynebacterial core regulon and integration into the transcriptional regulatory network model.
    Kohl TA; Tauch A
    J Biotechnol; 2009 Sep; 143(4):239-46. PubMed ID: 19665500
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.