BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 18987987)

  • 41. Pentose Phosphate Pathway Reactions in Photosynthesizing Cells.
    Sharkey TD
    Cells; 2021 Jun; 10(6):. PubMed ID: 34207480
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Implications of glycolytic and pentose phosphate pathways on the oxidative status and active mitochondria of the porcine oocyte during IVM.
    Alvarez GM; Casiró S; Gutnisky C; Dalvit GC; Sutton-McDowall ML; Thompson JG; Cetica PD
    Theriogenology; 2016 Dec; 86(9):2096-2106. PubMed ID: 27597631
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of non-oxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae.
    Matsushika A; Goshima T; Fujii T; Inoue H; Sawayama S; Yano S
    Enzyme Microb Technol; 2012 Jun; 51(1):16-25. PubMed ID: 22579386
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The pentose phosphate pathway is a metabolic redox sensor and regulates transcription during the antioxidant response.
    Krüger A; Grüning NM; Wamelink MM; Kerick M; Kirpy A; Parkhomchuk D; Bluemlein K; Schweiger MR; Soldatov A; Lehrach H; Jakobs C; Ralser M
    Antioxid Redox Signal; 2011 Jul; 15(2):311-24. PubMed ID: 21348809
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Retrospective detection of transaldolase deficiency in amniotic fluid: implications for prenatal diagnosis.
    Wamelink MM; Struys EA; Valayannopoulos V; Gonzales M; Saudubray JM; Jakobs C
    Prenat Diagn; 2008 May; 28(5):460-2. PubMed ID: 18444224
    [No Abstract]   [Full Text] [Related]  

  • 46. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli.
    Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X
    Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inhibition by fructose 1,6-bisphosphate of transaldolase from Escherichia coli.
    Ogawa T; Murakami K; Yoshino M
    FEMS Microbiol Lett; 2016 Sep; 363(17):. PubMed ID: 27481705
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Complex coordinated extracellular metabolism: Acid phosphatases activate diluted human leukocyte proteins to generate energy flow as NADPH from purine nucleotide ribose.
    Hibbs JB; Vavrin Z; Cox JE
    Redox Biol; 2016 Aug; 8():271-84. PubMed ID: 26895212
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An alternative pentose phosphate pathway in human gut bacteria for the degradation of C5 sugars in dietary fibers.
    Garschagen LS; Franke T; Deppenmeier U
    FEBS J; 2021 Mar; 288(6):1839-1858. PubMed ID: 32770699
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transaldolase deficiency caused by the homozygous p.R192C mutation of the TALDO1 gene in four Emirati patients with considerable phenotypic variability.
    Al-Shamsi AM; Ben-Salem S; Hertecant J; Al-Jasmi F
    Eur J Pediatr; 2015 May; 174(5):661-8. PubMed ID: 25388407
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The pentose phosphate pathway and cancer.
    Patra KC; Hay N
    Trends Biochem Sci; 2014 Aug; 39(8):347-54. PubMed ID: 25037503
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transaldolase deficiency in two new patients with a relative mild phenotype.
    Tylki-Szymańska A; Stradomska TJ; Wamelink MM; Salomons GS; Taybert J; Pawłowska J; Jakobs C
    Mol Genet Metab; 2009 May; 97(1):15-7. PubMed ID: 19299175
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Are we still on the right path(way)?: the altered expression of the pentose phosphate pathway in solid tumors and the potential of its inhibition in combination therapy.
    Meskers CJW; Franczak M; Smolenski RT; Giovannetti E; Peters GJ
    Expert Opin Drug Metab Toxicol; 2022 Jan; 18(1):61-83. PubMed ID: 35238253
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rapid simulation and analysis of isotopomer distributions using constraints based on enzyme mechanisms: an example from HT29 cancer cells.
    Selivanov VA; Meshalkina LE; Solovjeva ON; Kuchel PW; Ramos-Montoya A; Kochetov GA; Lee PW; Cascante M
    Bioinformatics; 2005 Sep; 21(17):3558-64. PubMed ID: 16002431
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Clinical and molecular characteristics of two transaldolase-deficient patients.
    Tylki-Szymanska A; Wamelink MM; Stradomska TJ; Salomons GS; Taybert J; Dąbrowska-Leonik N; Rurarz M
    Eur J Pediatr; 2014 Dec; 173(12):1679-82. PubMed ID: 24497183
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Role of thiamine status and genetic variability in transketolase and other pentose phosphate cycle enzymes in the progression of diabetic nephropathy.
    Pácal L; Tomandl J; Svojanovsky J; Krusová D; Stepánková S; Rehorová J; Olsovsky J; Belobrádková J; Tanhäuserová V; Tomandlová M; Muzík J; Kanková K
    Nephrol Dial Transplant; 2011 Apr; 26(4):1229-36. PubMed ID: 20826743
    [TBL] [Abstract][Full Text] [Related]  

  • 57. (13)C metabolic flux analysis in neurons utilizing a model that accounts for hexose phosphate recycling within the pentose phosphate pathway.
    Gebril HM; Avula B; Wang YH; Khan IA; Jekabsons MB
    Neurochem Int; 2016 Feb; 93():26-39. PubMed ID: 26723542
    [TBL] [Abstract][Full Text] [Related]  

  • 58. mTOR-dependent loss of PON1 secretion and antiphospholipid autoantibody production underlie autoimmunity-mediated cirrhosis in transaldolase deficiency.
    Winans T; Oaks Z; Choudhary G; Patel A; Huang N; Faludi T; Krakko D; Nolan J; Lewis J; Blair S; Lai Z; Landas SK; Middleton F; Asara JM; Chung SK; Wyman B; Azadi P; Banki K; Perl A
    J Autoimmun; 2023 Nov; 140():103112. PubMed ID: 37742509
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pentose phosphate pathway activity: effect on in vitro maturation and oxidative status of bovine oocytes.
    Gutnisky C; Dalvit GC; Thompson JG; Cetica PD
    Reprod Fertil Dev; 2014 Aug; 26(7):931-42. PubMed ID: 23859479
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The pentose phosphate pathway in industrially relevant fungi: crucial insights for bioprocessing.
    Masi A; Mach RL; Mach-Aigner AR
    Appl Microbiol Biotechnol; 2021 May; 105(10):4017-4031. PubMed ID: 33950280
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.