These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 18988730)

  • 21. RNA recognition and regulation of HIV-1 gene expression by viral factor Tat.
    Naryshkin NA; Gait MJ; Ivanovskaya MG
    Biochemistry (Mosc); 1998 May; 63(5):489-503. PubMed ID: 9632883
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A real-time view of the TAR:Tat:P-TEFb complex at HIV-1 transcription sites.
    Molle D; Maiuri P; Boireau S; Bertrand E; Knezevich A; Marcello A; Basyuk E
    Retrovirology; 2007 May; 4():36. PubMed ID: 17537237
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High level inhibition of HIV replication with combination RNA decoys expressed from an HIV-Tat inducible vector.
    Fraisier C; Irvine A; Wrighton C; Craig R; Dzierzak E
    Gene Ther; 1998 Dec; 5(12):1665-76. PubMed ID: 10023446
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The CAEV tat gene trans-activates the viral LTR and is necessary for efficient viral replication.
    Saltarelli MJ; Schoborg R; Gdovin SL; Clements JE
    Virology; 1993 Nov; 197(1):35-44. PubMed ID: 8212571
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemical cross-linking of the human immunodeficiency virus type 1 Tat protein to synthetic models of the RNA recognition sequence TAR containing site-specific trisubstituted pyrophosphate analogues.
    Naryshkin NA; Farrow MA; Ivanovskaya MG; Oretskaya TS; Shabarova ZA; Gait MJ
    Biochemistry; 1997 Mar; 36(12):3496-505. PubMed ID: 9131999
    [TBL] [Abstract][Full Text] [Related]  

  • 26. HIV-1 regulatory protein tat induces RNA binding proteins in central nervous system cells that associate with the viral trans-acting-response regulatory motif.
    Kundu M; Ansari SA; Chepenik LG; Pomerantz RJ; Khalili K; Rappaport J; Amini S
    J Hum Virol; 1999; 2(2):72-80. PubMed ID: 10225209
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-molecule detection and tracking of RNA transcripts in living cells using phosphorothioate-optimized 2'-O-methyl RNA molecular beacons.
    Zhao D; Yang Y; Qu N; Chen M; Ma Z; Krueger CJ; Behlke MA; Chen AK
    Biomaterials; 2016 Sep; 100():172-83. PubMed ID: 27261815
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coxsackievirus B-3 selection of virus resistant Buffalo green monkey kidney cells and chromosome analysis of parental and resistant cells.
    Cao Y; Walen KH; Schnurr D
    Arch Virol; 1988; 101(3-4):209-19. PubMed ID: 2845893
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimizing Molecular Beacons for Intracellular Analysis of RNA.
    Chen M; Yang Y; Krueger CJ; Chen AK
    Methods Mol Biol; 2018; 1649():243-257. PubMed ID: 29130202
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sub-cellular trafficking and functionality of 2'-O-methyl and 2'-O-methyl-phosphorothioate molecular beacons.
    Chen AK; Behlke MA; Tsourkas A
    Nucleic Acids Res; 2009 Dec; 37(22):e149. PubMed ID: 19820111
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Increase in the saturation of C18 fatty acids induced by coxsackie B6 virus in Vero cells.
    Nozawa CM; Apostolov K
    Virology; 1982 Jul; 120(1):247-50. PubMed ID: 6285601
    [No Abstract]   [Full Text] [Related]  

  • 32. Engineering molecular beacons for intracellular imaging.
    Wu CS; Peng L; You M; Han D; Chen T; Williams KR; Yang CJ; Tan W
    Int J Mol Imaging; 2012; 2012():501579. PubMed ID: 23209893
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fluorescent Platforms for RNA Chemical Biology Research.
    Du J; Dartawan R; Rice W; Gao F; Zhou JH; Sheng J
    Genes (Basel); 2022 Jul; 13(8):. PubMed ID: 36011259
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Imaging of Hepatitis B Virus Nucleic Acids: Current Advances and Challenges.
    Bustamante-Jaramillo LF; Fingal J; Blondot ML; Rydell GE; Kann M
    Viruses; 2022 Mar; 14(3):. PubMed ID: 35336964
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent Advances in the Molecular Beacon Technology for Live-Cell Single-Molecule Imaging.
    Mao S; Ying Y; Wu R; Chen AK
    iScience; 2020 Dec; 23(12):101801. PubMed ID: 33299972
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimizing peptide nucleic acid probes for hybridization-based detection and identification of bacterial pathogens.
    Mach KE; Kaushik AM; Hsieh K; Wong PK; Wang TH; Liao JC
    Analyst; 2019 Feb; 144(5):1565-1574. PubMed ID: 30656297
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparing Agent-Based Delivery of DNA and PNA Forced Intercalation (FIT) Probes for Multicolor mRNA Imaging.
    Chamiolo J; Fang GM; Hövelmann F; Friedrich D; Knoll A; Loewer A; Seitz O
    Chembiochem; 2019 Feb; 20(4):595-604. PubMed ID: 30326174
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A CRISPR/molecular beacon hybrid system for live-cell genomic imaging.
    Wu X; Mao S; Yang Y; Rushdi MN; Krueger CJ; Chen AK
    Nucleic Acids Res; 2018 Jul; 46(13):e80. PubMed ID: 29718399
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impairing the function of MLCK, myosin Va or myosin Vb disrupts Rhinovirus B14 replication.
    Real-Hohn A; Provance DW; Gonçalves RB; Denani CB; de Oliveira AC; Salerno VP; Oliveira Gomes AM
    Sci Rep; 2017 Dec; 7(1):17153. PubMed ID: 29215055
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fluorinated molecular beacons as functional DNA nanomolecules for cellular imaging.
    Jin C; Fu T; Wang R; Liu H; Zou J; Zhao Z; Ye M; Zhang X; Tan W
    Chem Sci; 2017 Oct; 8(10):7082-7086. PubMed ID: 29147537
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.