These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 18988745)

  • 1. Setting the chaperonin timer: the effects of K+ and substrate protein on ATP hydrolysis.
    Grason JP; Gresham JS; Widjaja L; Wehri SC; Lorimer GH
    Proc Natl Acad Sci U S A; 2008 Nov; 105(45):17334-8. PubMed ID: 18988745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Setting the chaperonin timer: a two-stroke, two-speed, protein machine.
    Grason JP; Gresham JS; Lorimer GH
    Proc Natl Acad Sci U S A; 2008 Nov; 105(45):17339-44. PubMed ID: 18988739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate protein switches GroE chaperonins from asymmetric to symmetric cycling by catalyzing nucleotide exchange.
    Ye X; Lorimer GH
    Proc Natl Acad Sci U S A; 2013 Nov; 110(46):E4289-97. PubMed ID: 24167257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Allosteric signaling of ATP hydrolysis in GroEL-GroES complexes.
    Ranson NA; Clare DK; Farr GW; Houldershaw D; Horwich AL; Saibil HR
    Nat Struct Mol Biol; 2006 Feb; 13(2):147-52. PubMed ID: 16429154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetry, commitment and inhibition in the GroE ATPase cycle impose alternating functions on the two GroEL rings.
    Kad NM; Ranson NA; Cliff MJ; Clarke AR
    J Mol Biol; 1998 Apr; 278(1):267-78. PubMed ID: 9571049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissociation of the GroEL-GroES asymmetric complex is accelerated by increased cooperativity in ATP binding to the GroEL ring distal to GroES.
    Fridmann Y; Kafri G; Danziger O; Horovitz A
    Biochemistry; 2002 May; 41(18):5938-44. PubMed ID: 11980498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL.
    Rye HS; Burston SG; Fenton WA; Beechem JM; Xu Z; Sigler PB; Horwich AL
    Nature; 1997 Aug; 388(6644):792-8. PubMed ID: 9285593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A kinetic analysis of the nucleotide-induced allosteric transitions of GroEL.
    Cliff MJ; Kad NM; Hay N; Lund PA; Webb MR; Burston SG; Clarke AR
    J Mol Biol; 1999 Oct; 293(3):667-84. PubMed ID: 10543958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP-triggered ADP release from the asymmetric chaperonin GroEL/GroES/ADP7 is not the rate-limiting step of the GroEL/GroES reaction cycle.
    Tyagi NK; Fenton WA; Horwich AL
    FEBS Lett; 2010 Mar; 584(5):951-3. PubMed ID: 20083109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate polypeptide presents a load on the apical domains of the chaperonin GroEL.
    Motojima F; Chaudhry C; Fenton WA; Farr GW; Horwich AL
    Proc Natl Acad Sci U S A; 2004 Oct; 101(42):15005-12. PubMed ID: 15479763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chaperonin-Assisted Protein Folding: Relative Population of Asymmetric and Symmetric GroEL:GroES Complexes.
    Haldar S; Gupta AJ; Yan X; Miličić G; Hartl FU; Hayer-Hartl M
    J Mol Biol; 2015 Jun; 427(12):2244-55. PubMed ID: 25912285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational changes in the GroEL oligomer during the functional cycle.
    Llorca O; Marco S; Carrascosa JL; Valpuesta JM
    J Struct Biol; 1997 Feb; 118(1):31-42. PubMed ID: 9087913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GroES promotes the T to R transition of the GroEL ring distal to GroES in the GroEL-GroES complex.
    Inbar E; Horovitz A
    Biochemistry; 1997 Oct; 36(40):12276-81. PubMed ID: 9315866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GroEL mediates protein folding with a two successive timer mechanism.
    Ueno T; Taguchi H; Tadakuma H; Yoshida M; Funatsu T
    Mol Cell; 2004 May; 14(4):423-34. PubMed ID: 15149592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A kinetic analysis of the nucleotide-induced allosteric transitions in a single-ring mutant of GroEL.
    Poso D; Clarke AR; Burston SG
    J Mol Biol; 2004 May; 338(5):969-77. PubMed ID: 15111060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrolysis of adenosine 5'-triphosphate by Escherichia coli GroEL: effects of GroES and potassium ion.
    Todd MJ; Viitanen PV; Lorimer GH
    Biochemistry; 1993 Aug; 32(33):8560-7. PubMed ID: 8102879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of chaperonin action: GroES binding and release can drive GroEL-mediated protein folding in the absence of ATP hydrolysis.
    Hayer-Hartl MK; Weber F; Hartl FU
    EMBO J; 1996 Nov; 15(22):6111-21. PubMed ID: 8947033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and function in GroEL-mediated protein folding.
    Sigler PB; Xu Z; Rye HS; Burston SG; Fenton WA; Horwich AL
    Annu Rev Biochem; 1998; 67():581-608. PubMed ID: 9759498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective ATPase activity and moderate chaperonin-cochaperonin interaction are important for the functional single-ring chaperonin system.
    Illingworth M; Salisbury J; Li W; Lin D; Chen L
    Biochem Biophys Res Commun; 2015 Oct; 466(1):15-20. PubMed ID: 26271593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GroEL/GroES cycling: ATP binds to an open ring before substrate protein favoring protein binding and production of the native state.
    Tyagi NK; Fenton WA; Horwich AL
    Proc Natl Acad Sci U S A; 2009 Dec; 106(48):20264-9. PubMed ID: 19915138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.