These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 18989398)

  • 1. Emergence of functional hierarchy in a multiple timescale neural network model: a humanoid robot experiment.
    Yamashita Y; Tani J
    PLoS Comput Biol; 2008 Nov; 4(11):e1000220. PubMed ID: 18989398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning to generate articulated behavior through the bottom-up and the top-down interaction processes.
    Tani J
    Neural Netw; 2003 Jan; 16(1):11-23. PubMed ID: 12576102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Codevelopmental learning between human and humanoid robot using a dynamic neural-network model.
    Tani J; Nishimoto R; Namikawa J; Ito M
    IEEE Trans Syst Man Cybern B Cybern; 2008 Feb; 38(1):43-59. PubMed ID: 18270081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motor primitive and sequence self-organization in a hierarchical recurrent neural network.
    Paine RW; Tani J
    Neural Netw; 2004; 17(8-9):1291-309. PubMed ID: 15555867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of compositional and contextual communicable congruence in robots by using dynamic neural network models.
    Park G; Tani J
    Neural Netw; 2015 Dec; 72():109-22. PubMed ID: 26498195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive, fast walking in a biped robot under neuronal control and learning.
    Manoonpong P; Geng T; Kulvicius T; Porr B; Wörgötter F
    PLoS Comput Biol; 2007 Jul; 3(7):e134. PubMed ID: 17630828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A neurodynamic account of spontaneous behaviour.
    Namikawa J; Nishimoto R; Tani J
    PLoS Comput Biol; 2011 Oct; 7(10):e1002221. PubMed ID: 22028634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. iSpike: a spiking neural interface for the iCub robot.
    Gamez D; Fidjeland AK; Lazdins E
    Bioinspir Biomim; 2012 Jun; 7(2):025008. PubMed ID: 22617339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generating Pointing Motions for a Humanoid Robot by Combining Motor Primitives.
    Tieck JCV; Schnell T; Kaiser J; Mauch F; Roennau A; Dillmann R
    Front Neurorobot; 2019; 13():77. PubMed ID: 31619981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational analysis in vitro: dynamics and plasticity of a neuro-robotic system.
    Karniel A; Kositsky M; Fleming KM; Chiappalone M; Sanguineti V; Alford ST; Mussa-Ivaldi FA
    J Neural Eng; 2005 Sep; 2(3):S250-65. PubMed ID: 16135888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A reflexive neural network for dynamic biped walking control.
    Geng T; Porr B; Wörgötter F
    Neural Comput; 2006 May; 18(5):1156-96. PubMed ID: 16595061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The eMOSAIC model for humanoid robot control.
    Sugimoto N; Morimoto J; Hyon SH; Kawato M
    Neural Netw; 2012 May; 29-30():8-19. PubMed ID: 22366503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic and interactive generation of object handling behaviors by a small humanoid robot using a dynamic neural network model.
    Ito M; Noda K; Hoshino Y; Tani J
    Neural Netw; 2006 Apr; 19(3):323-37. PubMed ID: 16618536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Programmer-Interpreter Neural Network Architecture for Prefrontal Cognitive Control.
    Donnarumma F; Prevete R; Chersi F; Pezzulo G
    Int J Neural Syst; 2015 Sep; 25(6):1550017. PubMed ID: 25986752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computing with networks of spiking neurons on a biophysically motivated floating-gate based neuromorphic integrated circuit.
    Brink S; Nease S; Hasler P
    Neural Netw; 2013 Sep; 45():39-49. PubMed ID: 23541925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity--symmetry breaking.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Aug; 101(2):103-14. PubMed ID: 19536559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-organization of spiking neural network that generates autonomous behavior in a real mobile robot.
    Alnajjar F; Murase K
    Int J Neural Syst; 2006 Aug; 16(4):229-39. PubMed ID: 16972312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methods for quantifying the informational structure of sensory and motor data.
    Lungarella M; Pegors T; Bulwinkle D; Sporns O
    Neuroinformatics; 2005; 3(3):243-62. PubMed ID: 16077161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Achieving "organic compositionality" through self-organization: reviews on brain-inspired robotics experiments.
    Tani J; Nishimoto R; Paine RW
    Neural Netw; 2008 May; 21(4):584-603. PubMed ID: 18495423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of random external background stimulation on network synaptic stability after tetanization: a modeling study.
    Chao ZC; Bakkum DJ; Wagenaar DA; Potter SM
    Neuroinformatics; 2005; 3(3):263-80. PubMed ID: 16077162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.