These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 18989411)

  • 1. Brain slice stimulation using a microfluidic network and standard perfusion chamber.
    Shaikh Mohammed J; Caicedo H; Fall CP; Eddington DT
    J Vis Exp; 2007; (8):302. PubMed ID: 18989411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applying microfluidics to electrophysiology.
    Eddington DT
    J Vis Exp; 2007; (8):301. PubMed ID: 18989410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multilayer PDMS microfluidic chamber for controlling brain slice microenvironment.
    Blake AJ; Pearce TM; Rao NS; Johnson SM; Williams JC
    Lab Chip; 2007 Jul; 7(7):842-9. PubMed ID: 17594002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiphysics simulation of a microfluidic perfusion chamber for brain slice physiology.
    Caicedo HH; Hernandez M; Fall CP; Eddington DT
    Biomed Microdevices; 2010 Oct; 12(5):761-7. PubMed ID: 20464499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microfluidic device for depositing and addressing two cell populations with intercellular population communication capability.
    Lovchik RD; Tonna N; Bianco F; Matteoli M; Delamarche E
    Biomed Microdevices; 2010 Apr; 12(2):275-82. PubMed ID: 20013313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic add-on for standard electrophysiology chambers.
    Mohammed JS; Caicedo HH; Fall CP; Eddington DT
    Lab Chip; 2008 Jul; 8(7):1048-55. PubMed ID: 18584078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic perfusion culture.
    Hattori K; Sugiura S; Kanamori T
    Methods Mol Biol; 2014; 1104():251-63. PubMed ID: 24297421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A polymer-based microfluidic device for immunosensing biochips.
    Soo Ko J; Yoon HC; Yang H; Pyo HB; Hyo Chung K; Jin Kim S; Tae Kim Y
    Lab Chip; 2003 May; 3(2):106-13. PubMed ID: 15100791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography.
    Wilson ME; Kota N; Kim Y; Wang Y; Stolz DB; LeDuc PR; Ozdoganlar OB
    Lab Chip; 2011 Apr; 11(8):1550-5. PubMed ID: 21399830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and characterization of a microfluidic chamber incorporating fluid ports with active suction for localized chemical stimulation of brain slices.
    Tang YT; Kim J; López-Valdés HE; Brennan KC; Ju YS
    Lab Chip; 2011 Jul; 11(13):2247-54. PubMed ID: 21562669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of multilayer-PDMS based microfluidic device for bio-particles concentration detection.
    Masrie M; Majlis BY; Yunas J
    Biomed Mater Eng; 2014; 24(6):1951-8. PubMed ID: 25226891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A circular cross-section PDMS microfluidics system for replication of cardiovascular flow conditions.
    Fiddes LK; Raz N; Srigunapalan S; Tumarkan E; Simmons CA; Wheeler AR; Kumacheva E
    Biomaterials; 2010 May; 31(13):3459-64. PubMed ID: 20167361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional interconnected microporous poly(dimethylsiloxane) microfluidic devices.
    Yuen PK; Su H; Goral VN; Fink KA
    Lab Chip; 2011 Apr; 11(8):1541-4. PubMed ID: 21359315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reciprocating flow-based centrifugal microfluidics mixer.
    Noroozi Z; Kido H; Micic M; Pan H; Bartolome C; Princevac M; Zoval J; Madou M
    Rev Sci Instrum; 2009 Jul; 80(7):075102. PubMed ID: 19655976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precise spatial and temporal control of oxygen within in vitro brain slices via microfluidic gas channels.
    Mauleon G; Fall CP; Eddington DT
    PLoS One; 2012; 7(8):e43309. PubMed ID: 22905255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous fabrication of PDMS through-holes for three-dimensional microfluidic applications.
    Mosadegh B; Agarwal M; Torisawa YS; Takayama S
    Lab Chip; 2010 Aug; 10(15):1983-6. PubMed ID: 20502832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of flow assisted entrapment of pollen grains in a microfluidic platform for tip growth analysis.
    Sanati Nezhad A; Ghanbari M; Agudelo CG; Naghavi M; Packirisamy M; Bhat RB; Geitmann A
    Biomed Microdevices; 2014 Feb; 16(1):23-33. PubMed ID: 24013680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes.
    Leclerc E; Sakai Y; Fujii T
    Biotechnol Prog; 2004; 20(3):750-5. PubMed ID: 15176878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfabrication of cylindrical microfluidic channel networks for microvascular research.
    Huang Z; Li X; Martins-Green M; Liu Y
    Biomed Microdevices; 2012 Oct; 14(5):873-83. PubMed ID: 22729782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The deformation of flexible PDMS microchannels under a pressure driven flow.
    Hardy BS; Uechi K; Zhen J; Pirouz Kavehpour H
    Lab Chip; 2009 Apr; 9(7):935-8. PubMed ID: 19294304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.