BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 18989431)

  • 1. Patterning cells on optically transparent indium tin oxide electrodes.
    Shah S; Revzin A
    J Vis Exp; 2007; (7):259. PubMed ID: 18989431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exercising spatiotemporal control of cell attachment with optically transparent microelectrodes.
    S Shah S; Lee JY; Verkhoturov S; Tuleuova N; Schweikert EA; Ramanculov E; Revzin A
    Langmuir; 2008 Jun; 24(13):6837-44. PubMed ID: 18512875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catch and release cell sorting: electrochemical desorption of T-cells from antibody-modified microelectrodes.
    Zhu H; Yan J; Revzin A
    Colloids Surf B Biointerfaces; 2008 Jul; 64(2):260-8. PubMed ID: 18394868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dense passivating poly(ethylene glycol) films on indium tin oxide substrates.
    Schlapak R; Armitage D; Saucedo-Zeni N; Hohage M; Howorka S
    Langmuir; 2007 Sep; 23(20):10244-53. PubMed ID: 17715951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrically modulated attachment and detachment of animal cells cultured on an optically transparent patterning electrode.
    Koyama S
    J Biosci Bioeng; 2011 May; 111(5):574-83. PubMed ID: 21277827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrically controlling cell adhesion, growth and migration.
    Gabi M; Larmagnac A; Schulte P; Vörös J
    Colloids Surf B Biointerfaces; 2010 Sep; 79(2):365-71. PubMed ID: 20541918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locally Addressable Electrochemical Patterning Technique (LAEPT) applied to poly(L-lysine)-graft-poly(ethylene glycol) adlayers on titanium and silicon oxide surfaces.
    Tang CS; Schmutz P; Petronis S; Textor M; Keller B; Vörös J
    Biotechnol Bioeng; 2005 Aug; 91(3):285-95. PubMed ID: 15977251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On-chip amperometric measurement of quantal catecholamine release using transparent indium tin oxide electrodes.
    Sun X; Gillis KD
    Anal Chem; 2006 Apr; 78(8):2521-5. PubMed ID: 16615759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical optical waveguide lightmode spectroscopy (EC-OWLS): a pilot study using evanescent-field optical sensing under voltage control to monitor polycationic polymer adsorption onto indium tin oxide (ITO)-coated waveguide chips.
    Bearinger JP; Vörös J; Hubbell JA; Textor M
    Biotechnol Bioeng; 2003 May; 82(4):465-73. PubMed ID: 12632403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Density control of poly(ethylene glycol) layer to regulate cellular attachment.
    Satomi T; Nagasaki Y; Kobayashi H; Otsuka H; Kataoka K
    Langmuir; 2007 Jun; 23(12):6698-703. PubMed ID: 17480105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemically switchable platform for the micro-patterning and release of heterotypic cell sheets.
    Guillaume-Gentil O; Gabi M; Zenobi-Wong M; Vörös J
    Biomed Microdevices; 2011 Feb; 13(1):221-30. PubMed ID: 21057978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatio-temporal detachment of single cells using microarrayed transparent electrodes.
    Fukuda J; Kameoka Y; Suzuki H
    Biomaterials; 2011 Oct; 32(28):6663-9. PubMed ID: 21665269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced electrochemical activity of redox-labels in multi-layered protein films on indium tin oxide nanoparticle-based electrode.
    Yang XQ; Guo LH
    Anal Chim Acta; 2009 Jan; 632(1):15-20. PubMed ID: 19100877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micropatterning of proteins and mammalian cells on indium tin oxide.
    Shah SS; Howland MC; Chen LJ; Silangcruz J; Verkhoturov SV; Schweikert EA; Parikh AN; Revzin A
    ACS Appl Mater Interfaces; 2009 Nov; 1(11):2592-601. PubMed ID: 20356132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct electrodeposition of gold nanoparticles on indium tin oxide surface and its application.
    Ma Y; Di J; Yan X; Zhao M; Lu Z; Tu Y
    Biosens Bioelectron; 2009 Jan; 24(5):1480-3. PubMed ID: 19038539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrode assemblies used for electroporation of cultured cells.
    Raptis L; Firth KL
    Methods Mol Biol; 2008; 423():61-76. PubMed ID: 18370190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electroporation of adherent cells in situ for the study of signal transduction and gap junctional communication.
    Raptis L; Vultur A; Brownell HL; Tomai E; Anagnostopoulou A; Arulanandam R; Cao J; Firth KL
    Methods Mol Biol; 2008; 423():173-89. PubMed ID: 18370198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-selective lateral multilayer assembly of bienzyme with polyelectrolyte on ITO electrode based on electric field-induced directly layer-by-layer deposition.
    Shi L; Lu Y; Sun J; Zhang J; Sun C; Liu J; Shen J
    Biomacromolecules; 2003; 4(5):1161-7. PubMed ID: 12959579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The construction of an individually addressable cell array for selective patterning and electroporation.
    Xu Y; Yao H; Wang L; Xing W; Cheng J
    Lab Chip; 2011 Jul; 11(14):2417-23. PubMed ID: 21625729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An endothelial cell compatible biosensor fabricated using optically thin indium tin oxide silicon nitride electrodes.
    Choi CK; English AE; Jun SI; Kihm KD; Rack PD
    Biosens Bioelectron; 2007 May; 22(11):2585-90. PubMed ID: 17113768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.