These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 18989431)

  • 1. Patterning cells on optically transparent indium tin oxide electrodes.
    Shah S; Revzin A
    J Vis Exp; 2007; (7):259. PubMed ID: 18989431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exercising spatiotemporal control of cell attachment with optically transparent microelectrodes.
    S Shah S; Lee JY; Verkhoturov S; Tuleuova N; Schweikert EA; Ramanculov E; Revzin A
    Langmuir; 2008 Jun; 24(13):6837-44. PubMed ID: 18512875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catch and release cell sorting: electrochemical desorption of T-cells from antibody-modified microelectrodes.
    Zhu H; Yan J; Revzin A
    Colloids Surf B Biointerfaces; 2008 Jul; 64(2):260-8. PubMed ID: 18394868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dense passivating poly(ethylene glycol) films on indium tin oxide substrates.
    Schlapak R; Armitage D; Saucedo-Zeni N; Hohage M; Howorka S
    Langmuir; 2007 Sep; 23(20):10244-53. PubMed ID: 17715951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrically modulated attachment and detachment of animal cells cultured on an optically transparent patterning electrode.
    Koyama S
    J Biosci Bioeng; 2011 May; 111(5):574-83. PubMed ID: 21277827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrically controlling cell adhesion, growth and migration.
    Gabi M; Larmagnac A; Schulte P; Vörös J
    Colloids Surf B Biointerfaces; 2010 Sep; 79(2):365-71. PubMed ID: 20541918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locally Addressable Electrochemical Patterning Technique (LAEPT) applied to poly(L-lysine)-graft-poly(ethylene glycol) adlayers on titanium and silicon oxide surfaces.
    Tang CS; Schmutz P; Petronis S; Textor M; Keller B; Vörös J
    Biotechnol Bioeng; 2005 Aug; 91(3):285-95. PubMed ID: 15977251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On-chip amperometric measurement of quantal catecholamine release using transparent indium tin oxide electrodes.
    Sun X; Gillis KD
    Anal Chem; 2006 Apr; 78(8):2521-5. PubMed ID: 16615759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical optical waveguide lightmode spectroscopy (EC-OWLS): a pilot study using evanescent-field optical sensing under voltage control to monitor polycationic polymer adsorption onto indium tin oxide (ITO)-coated waveguide chips.
    Bearinger JP; Vörös J; Hubbell JA; Textor M
    Biotechnol Bioeng; 2003 May; 82(4):465-73. PubMed ID: 12632403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Density control of poly(ethylene glycol) layer to regulate cellular attachment.
    Satomi T; Nagasaki Y; Kobayashi H; Otsuka H; Kataoka K
    Langmuir; 2007 Jun; 23(12):6698-703. PubMed ID: 17480105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemically switchable platform for the micro-patterning and release of heterotypic cell sheets.
    Guillaume-Gentil O; Gabi M; Zenobi-Wong M; Vörös J
    Biomed Microdevices; 2011 Feb; 13(1):221-30. PubMed ID: 21057978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatio-temporal detachment of single cells using microarrayed transparent electrodes.
    Fukuda J; Kameoka Y; Suzuki H
    Biomaterials; 2011 Oct; 32(28):6663-9. PubMed ID: 21665269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced electrochemical activity of redox-labels in multi-layered protein films on indium tin oxide nanoparticle-based electrode.
    Yang XQ; Guo LH
    Anal Chim Acta; 2009 Jan; 632(1):15-20. PubMed ID: 19100877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micropatterning of proteins and mammalian cells on indium tin oxide.
    Shah SS; Howland MC; Chen LJ; Silangcruz J; Verkhoturov SV; Schweikert EA; Parikh AN; Revzin A
    ACS Appl Mater Interfaces; 2009 Nov; 1(11):2592-601. PubMed ID: 20356132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct electrodeposition of gold nanoparticles on indium tin oxide surface and its application.
    Ma Y; Di J; Yan X; Zhao M; Lu Z; Tu Y
    Biosens Bioelectron; 2009 Jan; 24(5):1480-3. PubMed ID: 19038539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrode assemblies used for electroporation of cultured cells.
    Raptis L; Firth KL
    Methods Mol Biol; 2008; 423():61-76. PubMed ID: 18370190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electroporation of adherent cells in situ for the study of signal transduction and gap junctional communication.
    Raptis L; Vultur A; Brownell HL; Tomai E; Anagnostopoulou A; Arulanandam R; Cao J; Firth KL
    Methods Mol Biol; 2008; 423():173-89. PubMed ID: 18370198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-selective lateral multilayer assembly of bienzyme with polyelectrolyte on ITO electrode based on electric field-induced directly layer-by-layer deposition.
    Shi L; Lu Y; Sun J; Zhang J; Sun C; Liu J; Shen J
    Biomacromolecules; 2003; 4(5):1161-7. PubMed ID: 12959579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The construction of an individually addressable cell array for selective patterning and electroporation.
    Xu Y; Yao H; Wang L; Xing W; Cheng J
    Lab Chip; 2011 Jul; 11(14):2417-23. PubMed ID: 21625729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An endothelial cell compatible biosensor fabricated using optically thin indium tin oxide silicon nitride electrodes.
    Choi CK; English AE; Jun SI; Kihm KD; Rack PD
    Biosens Bioelectron; 2007 May; 22(11):2585-90. PubMed ID: 17113768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.