BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 18989648)

  • 21. Computational study of effects of tension imbalance on phonation in a three-dimensional tubular larynx model.
    Xue Q; Zheng X; Mittal R; Bielamowicz S
    J Voice; 2014 Jul; 28(4):411-9. PubMed ID: 24725589
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of entrance radii on intraglottal pressure distributions in the divergent glottis.
    Li S; Scherer RC; Wan M; Wang S
    J Acoust Soc Am; 2012 Feb; 131(2):1371-7. PubMed ID: 22352510
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of 10 degrees.
    Scherer RC; Shinwari D; De Witt KJ; Zhang C; Kucinschi BR; Afjeh AA
    J Acoust Soc Am; 2001 Apr; 109(4):1616-30. PubMed ID: 11325132
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Can vocal economy in phonation be increased with an artificially lengthened vocal tract? A computer modeling study.
    Titze IR; Laukkanen AM
    Logoped Phoniatr Vocol; 2007; 32(4):147-56. PubMed ID: 17917981
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intraglottal pressures in a three-dimensional model with a non-rectangular glottal shape.
    Scherer RC; Torkaman S; Kucinschi BR; Afjeh AA
    J Acoust Soc Am; 2010 Aug; 128(2):828-38. PubMed ID: 20707452
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vocal fold bulging effects on phonation using a biophysical computer model.
    Alipour F; Scherer RC
    J Voice; 2000 Dec; 14(4):470-83. PubMed ID: 11130105
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cause-effect relationship between vocal fold physiology and voice production in a three-dimensional phonation model.
    Zhang Z
    J Acoust Soc Am; 2016 Apr; 139(4):1493. PubMed ID: 27106298
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unsteady laryngeal airflow simulations of the intra-glottal vortical structures.
    Mihaescu M; Khosla SM; Murugappan S; Gutmark EJ
    J Acoust Soc Am; 2010 Jan; 127(1):435-44. PubMed ID: 20058989
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The influence of epilarynx area on vocal fold dynamics.
    Döllinger M; Berry DA; Montequin DW
    Otolaryngol Head Neck Surg; 2006 Nov; 135(5):724-729. PubMed ID: 17071302
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational Models of Laryngeal Aerodynamics: Potentials and Numerical Costs.
    Sadeghi H; Kniesburges S; Kaltenbacher M; Schützenberger A; Döllinger M
    J Voice; 2019 Jul; 33(4):385-400. PubMed ID: 29428274
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimized transformation of the glottal motion into a mechanical model.
    Triep M; Brücker C; Stingl M; Döllinger M
    Med Eng Phys; 2011 Mar; 33(2):210-7. PubMed ID: 21115384
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flow visualization and pressure distributions in a model of the glottis with a symmetric and oblique divergent angle of 10 degrees.
    Shinwari D; Scherer RC; DeWitt KJ; Afjeh AA
    J Acoust Soc Am; 2003 Jan; 113(1):487-97. PubMed ID: 12558286
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Validation of theoretical models of phonation threshold pressure with data from a vocal fold mechanical replica.
    Lucero JC; Van Hirtum A; Ruty N; Cisonni J; Pelorson X
    J Acoust Soc Am; 2009 Feb; 125(2):632-5. PubMed ID: 19206840
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamic vocal fold parameters with changing adduction in ex-vivo hemilarynx experiments.
    Döllinger M; Berry DA; Kniesburges S
    J Acoust Soc Am; 2016 May; 139(5):2372. PubMed ID: 27250133
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of inferior surface angle on the self-oscillation of a computational vocal fold model.
    Smith SL; Thomson SL
    J Acoust Soc Am; 2012 May; 131(5):4062-75. PubMed ID: 22559379
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Supraglottic activity: evidence of vocal hyperfunction or laryngeal articulation?
    Stager SV; Bielamowicz SA; Regnell JR; Gupta A; Barkmeier JM
    J Speech Lang Hear Res; 2000 Feb; 43(1):229-38. PubMed ID: 10668665
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vocal instabilities in a three-dimensional body-cover phonation model.
    Zhang Z
    J Acoust Soc Am; 2018 Sep; 144(3):1216. PubMed ID: 30424612
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Further studies of phonation threshold pressure in a physical model of the vocal fold mucosa.
    Chan RW; Titze IR; Titze MR
    J Acoust Soc Am; 1997 Jun; 101(6):3722-7. PubMed ID: 9193059
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-speed registration of phonation-related glottal area variation during artificial lengthening of the vocal tract.
    Laukkanen AM; Pulakka H; Alku P; Vilkman E; Hertegård S; Lindestad PA; Larsson H; Granqvist S
    Logoped Phoniatr Vocol; 2007; 32(4):157-64. PubMed ID: 17917980
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Glottal flow through a two-mass model: comparison of Navier-Stokes solutions with simplified models.
    de Vries MP; Schutte HK; Veldman AE; Verkerke GJ
    J Acoust Soc Am; 2002 Apr; 111(4):1847-53. PubMed ID: 12002868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.