These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 18989648)

  • 41. A quantitative study of the medial surface dynamics of an in vivo canine vocal fold during phonation.
    Doellinger M; Berry DA; Berke GS
    Laryngoscope; 2005 Sep; 115(9):1646-54. PubMed ID: 16148711
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A numerical and experimental investigation of the effect of false vocal fold geometry on glottal flow.
    Farahani MH; Mousel J; Alipour F; Vigmostad S
    J Biomech Eng; 2013 Dec; 135(12):121006. PubMed ID: 24008864
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Experimental validation of a three-dimensional reduced-order continuum model of phonation.
    Farahani MH; Zhang Z
    J Acoust Soc Am; 2016 Aug; 140(2):EL172. PubMed ID: 27586776
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Numerical analysis and comparison of flow fields in normal larynx and larynx with unilateral vocal fold paralysis.
    Bagheri Sarvestani A; Goshtasbi Rad E; Iravani K
    Comput Methods Biomech Biomed Engin; 2018 Jun; 21(8):532-540. PubMed ID: 30024283
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Principal dimensions of voice production and their role in vocal expression.
    Zhang Z
    J Acoust Soc Am; 2024 Jul; 156(1):278-283. PubMed ID: 38980102
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of a constriction in the near field of the vocal folds: physical modeling and experimental validation.
    Bailly L; Pelorson X; Henrich N; Ruty N
    J Acoust Soc Am; 2008 Nov; 124(5):3296-308. PubMed ID: 19045812
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nonstimulated rabbit phonation model: Cricothyroid approximation.
    Novaleski CK; Kojima T; Chang S; Luo H; Valenzuela CV; Rousseau B
    Laryngoscope; 2016 Jul; 126(7):1589-94. PubMed ID: 26971861
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Computational simulations of vocal fold vibration: Bernoulli versus Navier-Stokes.
    Decker GZ; Thomson SL
    J Voice; 2007 May; 21(3):273-84. PubMed ID: 16504473
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A computational study of asymmetric glottal jet deflection during phonation.
    Zheng X; Mittal R; Bielamowicz S
    J Acoust Soc Am; 2011 Apr; 129(4):2133-43. PubMed ID: 21476669
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Simulations of temporal patterns of oral airflow in men and women using a two-mass model of the vocal folds under dynamic control.
    Lucero JC; Koenig LL
    J Acoust Soc Am; 2005 Mar; 117(3 Pt 1):1362-72. PubMed ID: 15807024
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A theoretical model of the pressure field arising from asymmetric intraglottal flows applied to a two-mass model of the vocal folds.
    Erath BD; Peterson SD; ZaƱartu M; Wodicka GR; Plesniak MW
    J Acoust Soc Am; 2011 Jul; 130(1):389-403. PubMed ID: 21786907
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Computational Modeling of Voice Production Using Excised Canine Larynx.
    Jiang W; Farbos de Luzan C; Wang X; Oren L; Khosla SM; Xue Q; Zheng X
    J Biomech Eng; 2022 Feb; 144(2):. PubMed ID: 34423809
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of vocal fold stiffness on voice production in a three-dimensional body-cover phonation model.
    Zhang Z
    J Acoust Soc Am; 2017 Oct; 142(4):2311. PubMed ID: 29092586
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Modeling the biomechanical influence of epilaryngeal stricture on the vocal folds: a low-dimensional model of vocal-ventricular fold coupling.
    Moisik SR; Esling JH
    J Speech Lang Hear Res; 2014 Apr; 57(2):S687-704. PubMed ID: 24687007
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influence of supraglottal structures on the glottal jet exiting a two-layer synthetic, self-oscillating vocal fold model.
    Drechsel JS; Thomson SL
    J Acoust Soc Am; 2008 Jun; 123(6):4434-45. PubMed ID: 18537394
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanical characterization of vocal fold tissue: a review study.
    Miri AK
    J Voice; 2014 Nov; 28(6):657-67. PubMed ID: 25008382
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Computational modeling of phonatory dynamics in a tubular three-dimensional model of the human larynx.
    Xue Q; Mittal R; Zheng X; Bielamowicz S
    J Acoust Soc Am; 2012 Sep; 132(3):1602-13. PubMed ID: 22978889
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A methodological study of hemilaryngeal phonation.
    Jiang JJ; Titze IR
    Laryngoscope; 1993 Aug; 103(8):872-82. PubMed ID: 8361290
    [TBL] [Abstract][Full Text] [Related]  

  • 59. False Vocal Fold Characteristics in Presbylarynges and Recurrent Laryngeal Neuropathy.
    Persky M; Sanders B; Rosen CA; Kahane J; Fang Y; Amin MR; Branski RC
    Ann Otol Rhinol Laryngol; 2017 Jan; 126(1):42-46. PubMed ID: 27780911
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Aerodynamic transfer of energy to the vocal folds.
    Thomson SL; Mongeau L; Frankel SH
    J Acoust Soc Am; 2005 Sep; 118(3 Pt 1):1689-700. PubMed ID: 16240827
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.