These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
389 related articles for article (PubMed ID: 18989792)
1. Structure, function, and modification of the voltage sensor in voltage-gated ion channels. Börjesson SI; Elinder F Cell Biochem Biophys; 2008; 52(3):149-74. PubMed ID: 18989792 [TBL] [Abstract][Full Text] [Related]
2. Dissecting the coupling between the voltage sensor and pore domains. Roux B Neuron; 2006 Nov; 52(4):568-9. PubMed ID: 17114039 [TBL] [Abstract][Full Text] [Related]
3. Large-scale movement within the voltage-sensor paddle of a potassium channel-support for a helical-screw motion. Broomand A; Elinder F Neuron; 2008 Sep; 59(5):770-7. PubMed ID: 18786360 [TBL] [Abstract][Full Text] [Related]
4. On the opening of voltage-gated ion channels. Elinder F; Nilsson J; Arhem P Physiol Behav; 2007 Sep; 92(1-2):1-7. PubMed ID: 17585963 [TBL] [Abstract][Full Text] [Related]
6. Solution structure of the HsapBK K+ channel voltage-sensor paddle sequence. Unnerståle S; Lind J; Papadopoulos E; Mäler L Biochemistry; 2009 Jun; 48(25):5813-21. PubMed ID: 19456106 [TBL] [Abstract][Full Text] [Related]
7. Computer simulation of the KvAP voltage-gated potassium channel: steered molecular dynamics of the voltage sensor. Monticelli L; Robertson KM; MacCallum JL; Tieleman DP FEBS Lett; 2004 Apr; 564(3):325-32. PubMed ID: 15111117 [TBL] [Abstract][Full Text] [Related]
8. Membrane insertion of a potassium-channel voltage sensor. Hessa T; White SH; von Heijne G Science; 2005 Mar; 307(5714):1427. PubMed ID: 15681341 [TBL] [Abstract][Full Text] [Related]
9. The principle of gating charge movement in a voltage-dependent K+ channel. Jiang Y; Ruta V; Chen J; Lee A; MacKinnon R Nature; 2003 May; 423(6935):42-8. PubMed ID: 12721619 [TBL] [Abstract][Full Text] [Related]
10. Calibrated measurement of gating-charge arginine displacement in the KvAP voltage-dependent K+ channel. Ruta V; Chen J; MacKinnon R Cell; 2005 Nov; 123(3):463-75. PubMed ID: 16269337 [TBL] [Abstract][Full Text] [Related]
12. Modulation of voltage sensitivity by N-terminal cytoplasmic residues in human Kv1.2 channels. Varshney A; S K; Mathew MK Eur Biophys J; 2002 Sep; 31(5):365-72. PubMed ID: 12202912 [TBL] [Abstract][Full Text] [Related]
13. Focused electric field across the voltage sensor of potassium channels. Ahern CA; Horn R Neuron; 2005 Oct; 48(1):25-9. PubMed ID: 16202706 [TBL] [Abstract][Full Text] [Related]
15. X-ray structure of a voltage-dependent K+ channel. Jiang Y; Lee A; Chen J; Ruta V; Cadene M; Chait BT; MacKinnon R Nature; 2003 May; 423(6935):33-41. PubMed ID: 12721618 [TBL] [Abstract][Full Text] [Related]
16. A structural interpretation of voltage-gated potassium channel inactivation. Kurata HT; Fedida D Prog Biophys Mol Biol; 2006 Oct; 92(2):185-208. PubMed ID: 16316679 [TBL] [Abstract][Full Text] [Related]
17. A charged view of voltage-gated ion channels. Miller C Nat Struct Biol; 2003 Jun; 10(6):422-4. PubMed ID: 12768203 [No Abstract] [Full Text] [Related]
18. A proton pore in a potassium channel voltage sensor reveals a focused electric field. Starace DM; Bezanilla F Nature; 2004 Feb; 427(6974):548-53. PubMed ID: 14765197 [TBL] [Abstract][Full Text] [Related]
19. A possible molecular mechanism of hanatoxin binding-modified gating in voltage-gated K+-channels. Lou KL; Huang PT; Shiau YS; Liaw YC; Shiau YY; Liou HH J Mol Recognit; 2003; 16(6):392-5. PubMed ID: 14732930 [TBL] [Abstract][Full Text] [Related]
20. Voltage-gated potassium channels: regulation by accessory subunits. Li Y; Um SY; McDonald TV Neuroscientist; 2006 Jun; 12(3):199-210. PubMed ID: 16684966 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]