These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Growth of ZnO nanowires catalyzed by size-dependent melting of Au nanoparticles. Petersen EW; Likovich EM; Russell KJ; Narayanamurti V Nanotechnology; 2009 Oct; 20(40):405603. PubMed ID: 19738315 [TBL] [Abstract][Full Text] [Related]
23. Tunable, flexible antireflection layer of ZnO nanowires embedded in PDMS. Kim MK; Yi DK; Paik U Langmuir; 2010 May; 26(10):7552-4. PubMed ID: 20205400 [TBL] [Abstract][Full Text] [Related]
24. Synthesis and evolution of novel hollow ZnO urchins by a simple thermal evaporation process. Shen G; Bando Y; Lee CJ J Phys Chem B; 2005 Jun; 109(21):10578-83. PubMed ID: 16852283 [TBL] [Abstract][Full Text] [Related]
25. Reverse microemulsion-mediated synthesis of SiO(2)-coated ZnO composite nanoparticles: multiple cores with tunable shell thickness. Wang J; Tsuzuki T; Sun L; Wang X ACS Appl Mater Interfaces; 2010 Apr; 2(4):957-60. PubMed ID: 20423116 [TBL] [Abstract][Full Text] [Related]
26. pH-dependent toxicity of high aspect ratio ZnO nanowires in macrophages due to intracellular dissolution. Müller KH; Kulkarni J; Motskin M; Goode A; Winship P; Skepper JN; Ryan MP; Porter AE ACS Nano; 2010 Nov; 4(11):6767-79. PubMed ID: 20949917 [TBL] [Abstract][Full Text] [Related]
27. Probing the highly efficient room temperature ammonia gas sensing properties of a luminescent ZnO nanowire array prepared via an AAO-assisted template route. Kumar N; Srivastava AK; Nath R; Gupta BK; Varma GD Dalton Trans; 2014 Apr; 43(15):5713-20. PubMed ID: 24557454 [TBL] [Abstract][Full Text] [Related]
28. Gold at the root or at the tip of ZnO nanowires: a model. Kim DS; Scholz R; Gösele U; Zacharias M Small; 2008 Oct; 4(10):1615-9. PubMed ID: 18770505 [No Abstract] [Full Text] [Related]
29. Preparation of core-shell ZnO-SiO2 nanowires-nanotubes for immobilization of the alkaline protease enzyme. Sadjadi MS; Farhadyar N; Zare K J Nanosci Nanotechnol; 2011 Oct; 11(10):9304-9. PubMed ID: 22400341 [TBL] [Abstract][Full Text] [Related]
30. From GaN to ZnGa(2)O(4) through a low-temperature process: nanotube and heterostructure arrays. Lu MY; Zhou X; Chiu CY; Crawford S; Gradečak S ACS Appl Mater Interfaces; 2014 Jan; 6(2):882-7. PubMed ID: 24354279 [TBL] [Abstract][Full Text] [Related]
32. ZnO nanowires by pulsed laser vaporization: synthesis and properties. Ganesan PG; McGuire K; Kim H; Gothard N; Mohan S; Rao AM; Ramanath G J Nanosci Nanotechnol; 2005 Jul; 5(7):1125-9. PubMed ID: 16108438 [TBL] [Abstract][Full Text] [Related]
33. SiO(2)/Ta(2)O(5) core-shell nanowires and nanotubes. Chueh YL; Chou LJ; Wang ZL Angew Chem Int Ed Engl; 2006 Nov; 45(46):7773-8. PubMed ID: 17054294 [No Abstract] [Full Text] [Related]
34. Zinc oxide nanowire interphase for enhanced interfacial strength in lightweight polymer fiber composites. Ehlert GJ; Sodano HA ACS Appl Mater Interfaces; 2009 Aug; 1(8):1827-33. PubMed ID: 20355800 [TBL] [Abstract][Full Text] [Related]
35. Fabrication and photoluminescent properties of Gd2O3 : EU3+ nanowires in AAO template. Li S; Song H; Yu L; Liu Z; Pan G; Yu H; Dai Q; Fan L; Lei Y; Wang T; Ren X; Lu S; Zhao H J Nanosci Nanotechnol; 2007 Feb; 7(2):474-80. PubMed ID: 17450781 [TBL] [Abstract][Full Text] [Related]
36. Controlled positioning of large interfacial nanocavities via stress-engineered void localization. Güder F; Yang Y; Goetze S; Berger A; Ramgir N; Hesse D; Zacharias M Small; 2010 Aug; 6(15):1603-7. PubMed ID: 20635347 [No Abstract] [Full Text] [Related]
37. Molecular dynamics simulation of ZnO nanowires: size effects, defects, and super ductility. Dai L; Cheong WC; Sow CH; Lim CT; Tan VB Langmuir; 2010 Jan; 26(2):1165-71. PubMed ID: 19711920 [TBL] [Abstract][Full Text] [Related]
39. The fabrication of ZnO nanowire field-effect transistors combining dielectrophoresis and hot-pressing. Chang YK; Hong FC Nanotechnology; 2009 Jun; 20(23):235202. PubMed ID: 19448287 [TBL] [Abstract][Full Text] [Related]
40. In situ TEM observation of the growth and decomposition of monoclinic W(18)O(49) nanowires. Chen CL; Mori H Nanotechnology; 2009 Jul; 20(28):285604. PubMed ID: 19550017 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]