BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 18989909)

  • 1. Stereoelectronic and solvation effects determine hydroxymethyl conformational preferences in monosaccharides.
    Barnett CB; Naidoo KJ
    J Phys Chem B; 2008 Dec; 112(48):15450-9. PubMed ID: 18989909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbohydrate solution simulations: producing a force field with experimentally consistent primary alcohol rotational frequencies and populations.
    Kuttel M; Brady JW; Naidoo KJ
    J Comput Chem; 2002 Oct; 23(13):1236-43. PubMed ID: 12210149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlated C-C and C-O bond conformations in saccharide hydroxymethyl groups: parametrization and application of redundant 1H-1H, 13C-1H, and 13C-13C NMR J-couplings.
    Thibaudeau C; Stenutz R; Hertz B; Klepach T; Zhao S; Wu Q; Carmichael I; Serianni AS
    J Am Chem Soc; 2004 Dec; 126(48):15668-85. PubMed ID: 15571389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformation, dynamics, solvation and relative stabilities of selected beta-hexopyranoses in water: a molecular dynamics study with the GROMOS 45A4 force field.
    Kräutler V; Müller M; Hünenberger PH
    Carbohydr Res; 2007 Oct; 342(14):2097-124. PubMed ID: 17573054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroxymethyl rotamer populations in disaccharides.
    Roën A; Padrón JI; Vázquez JT
    J Org Chem; 2003 Jun; 68(12):4615-30. PubMed ID: 12790564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DFT studies of the disaccharide, alpha-maltose: relaxed isopotential maps.
    Schnupf U; Willett JL; Bosma WB; Momany FA
    Carbohydr Res; 2007 Nov; 342(15):2270-85. PubMed ID: 17669381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational properties of glucose-based disaccharides investigated using molecular dynamics simulations with local elevation umbrella sampling.
    Perić-Hassler L; Hansen HS; Baron R; Hünenberger PH
    Carbohydr Res; 2010 Aug; 345(12):1781-801. PubMed ID: 20576257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New Karplus equations for 2JHH, 3JHH, 2JCH, 3JCH, 3JCOCH, 3JCSCH, and 3JCCCH in some aldohexopyranoside derivatives as determined using NMR spectroscopy and density functional theory calculations.
    Tafazzoli M; Ghiasi M
    Carbohydr Res; 2007 Oct; 342(14):2086-96. PubMed ID: 17583685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intramolecular hydrogen bonding in disubstituted ethanes. A comparison of NH...O- and OH...O- Hydrogen bonding through conformational analysis of 4-amino-4-oxobutanoate (succinamate) and monohydrogen 1,4-butanoate (monohydrogen succinate) anions.
    Rudner MS; Jeremic S; Petterson KA; Kent DR; Brown KA; Drake MD; Goddard WA; Roberts JD
    J Phys Chem A; 2005 Oct; 109(40):9076-82. PubMed ID: 16332014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DFTMD studies of glucose and epimers: anomeric ratios, rotamer populations, and hydration energies.
    Schnupf U; Willett JL; Momany F
    Carbohydr Res; 2010 Feb; 345(4):503-11. PubMed ID: 20045509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational domino effect in saccharides: a prediction from alkyl beta-(1-->6)-diglucopyranosides.
    Roën A; Padrón JI; Mayato C; Vázquez JT
    J Org Chem; 2008 May; 73(9):3351-63. PubMed ID: 18386907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational properties of and a reorientation triggered by sugar-water vibrational resonance in the hydroxymethyl group in hydrated beta-glucopyranose.
    Suzuki T; Kawashima H; Sota T
    J Phys Chem B; 2006 Feb; 110(5):2405-18. PubMed ID: 16471832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neutron diffraction and simulation studies of the exocyclic hydroxymethyl conformation of glucose.
    Mason PE; Neilson GW; Enderby JE; Saboungi ML; Cuello G; Brady JW
    J Chem Phys; 2006 Dec; 125(22):224505. PubMed ID: 17176147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. B3LYP/6-311++G** geometry-optimization study of pentahydrates of alpha- and beta-D-glucopyranose.
    Momany FA; Appell M; Willett JL; Bosma WB
    Carbohydr Res; 2005 Jul; 340(9):1638-55. PubMed ID: 15925351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The (alpha-1,6) glycosidic bond of isomaltose: a tricky system for theoretical conformational studies.
    Javaroni F; Ferreira AB; da Silva CO
    Carbohydr Res; 2009 Jul; 344(10):1235-47. PubMed ID: 19508914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stereoelectronic interaction and their effects on conformational preference for 2-substituted methylenecyclohexane: an experimental and theoretical investigation.
    Anizelli PR; Vilcachagua JD; Neto AC; Tormena CF
    J Phys Chem A; 2008 Sep; 112(37):8785-9. PubMed ID: 18714949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulations of a guaiacyl beta-O-4 lignin model compound: examination of intramolecular hydrogen bonding and conformational flexibility.
    Besombes S; Mazeau K
    Biopolymers; 2004 Feb; 73(3):301-15. PubMed ID: 14755566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DFT and NMR studies of 2JCOH, 3JHCOH, and 3JCCOH spin-couplings in saccharides: C-O torsional bias and H-bonding in aqueous solution.
    Zhao H; Pan Q; Zhang W; Carmichael I; Serianni AS
    J Org Chem; 2007 Sep; 72(19):7071-82. PubMed ID: 17316047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 1H chemical shifts in NMR: Part 22-Prediction of the 1H chemical shifts of alcohols, diols and inositols in solution, a conformational and solvation investigation.
    Abraham RJ; Byrne JJ; Griffiths L; Koniotou R
    Magn Reson Chem; 2005 Aug; 43(8):611-24. PubMed ID: 15986495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum mechanical analysis of 1,2-ethanediol conformational energetics and hydrogen bonding.
    Guvench O; Mackerell AD
    J Phys Chem A; 2006 Aug; 110(32):9934-9. PubMed ID: 16898697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.