These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 18989914)

  • 1. Semi-ideal solution theory. 2. Extension to conductivity of mixed electrolyte solutions.
    Hu YF; Zhang XM; Li JG; Liang QQ
    J Phys Chem B; 2008 Dec; 112(48):15376-81. PubMed ID: 18989914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The semi-ideal solution theory for mixed ionic solutions at solid-liquid-vapor equilibrium.
    Hu YF; Fan SS; Liang DQ
    J Phys Chem A; 2006 Mar; 110(12):4276-84. PubMed ID: 16553381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward an understanding of the salting-out effects in aqueous ionic liquid solutions: vapor-liquid equilibria, liquid-liquid equilibria, volumetric, compressibility, and conductivity behavior.
    Sadeghi R; Mostafa B; Parsi E; Shahebrahimi Y
    J Phys Chem B; 2010 Dec; 114(49):16528-41. PubMed ID: 21080679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. JESS, a joint expert speciation system--V: approaching thermodynamic property prediction for multicomponent concentrated aqueous electrolyte solutions.
    Rowland D; May PM
    Talanta; 2010 Apr; 81(1-2):149-55. PubMed ID: 20188901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uranyl(VI) nitrate salts: modeling thermodynamic properties using the binding mean spherical approximation theory and determination of "fictive" binary data.
    Ruas A; Bernard O; Caniffi B; Simonin JP; Turq P; Blum L; Moisy P
    J Phys Chem B; 2006 Feb; 110(7):3435-43. PubMed ID: 16494358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical conductivity of mixed electrolytes: Modeling within the mean spherical approximation.
    Roger GM; Durand-Vidal S; Bernard O; Turq P
    J Phys Chem B; 2009 Jun; 113(25):8670-4. PubMed ID: 19485401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reassessment of the binary, ternary, and quaternary interactions in mixed electrolytes from thermodynamic quantities: The systems with uncommon ions containing hydrophobic character.
    Kumar A
    J Phys Chem B; 2005 Jun; 109(23):11743-52. PubMed ID: 16852442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic Quantities of Surface Formation of Aqueous Electrolyte Solutions.
    Matubayasi N; Yamaguchi Si; Yamamoto K; Matsuo H
    J Colloid Interface Sci; 1999 Jan; 209(2):403-407. PubMed ID: 9885270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface tension of mixed inorganic and dicarboxylic acid aqueous solutions at 298.15 K and their importance for cloud activation predictions.
    Booth AM; Topping DO; McFiggans G; Percival CJ
    Phys Chem Chem Phys; 2009 Sep; 11(36):8021-8. PubMed ID: 19727509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dielectric analysis of nanofiltration membrane in electrolyte solutions: influences of electrolyte concentration and species on membrane permeation.
    Li YH; Zhao KS
    J Colloid Interface Sci; 2004 Aug; 276(1):68-76. PubMed ID: 15219431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvation of electrolytes and nonelectrolytes in aqueous solutions.
    Afanas'ev VN
    J Phys Chem B; 2011 May; 115(20):6541-63. PubMed ID: 21542579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A unifying mode-coupling theory for transport properties of electrolyte solutions. II. Results for equal-sized ions electrolytes.
    Aburto CC; Nägele G
    J Chem Phys; 2013 Oct; 139(13):134110. PubMed ID: 24116555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ab initio simulations of thermodynamic and chemical properties of detonation product mixtures.
    Maillet JB; Bourasseau E
    J Chem Phys; 2009 Aug; 131(8):084107. PubMed ID: 19725608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A conductivity study of unsymmetrical 2:1 type "complex ion" electrolyte: cadmium chloride in dilute aqueous solutions.
    Apelblat A; Esteso MA; Bešter-Rogač M
    J Phys Chem B; 2013 May; 117(17):5241-8. PubMed ID: 23534843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental measurement and thermodynamic modeling of the mixed CH4 + C3H8 clathrate hydrate equilibria in silica gel pores: effects of pore size and salinity.
    Lee S; Seo Y
    Langmuir; 2010 Jun; 26(12):9742-8. PubMed ID: 20408565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of chronopotentiometry to determine the thickness of diffusion layer adjacent to an ion-exchange membrane under natural convection.
    Larchet C; Nouri S; Auclair B; Dammak L; Nikonenko V
    Adv Colloid Interface Sci; 2008 Jun; 139(1-2):45-61. PubMed ID: 18308286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental and Modeling of Conductivity for Electrolyte Solution Systems.
    Zhang W; Chen X; Wang Y; Wu L; Hu Y
    ACS Omega; 2020 Sep; 5(35):22465-22474. PubMed ID: 32923805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A theoretical study on the frequency-dependent electric conductivity of electrolyte solutions. II. Effect of hydrodynamic interaction.
    Yamaguchi T; Matsuoka T; Koda S
    J Chem Phys; 2009 Mar; 130(9):094506. PubMed ID: 19275408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamics of aqueous complex solutions containing 3/1 rare earth electrolyte pairs and salting-out agents to very high concentrations.
    Wang ZC; He M; Gong LD
    J Phys Chem B; 2007 Apr; 111(14):3704-15. PubMed ID: 17388521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of the multisolute osmotic virial equation to solutions containing electrolytes.
    Prickett RC; Elliott JA; McGann LE
    J Phys Chem B; 2011 Dec; 115(49):14531-43. PubMed ID: 22004311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.