These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 18989940)

  • 1. Small-molecule fluorescent sensors for investigating zinc metalloneurochemistry.
    Nolan EM; Lippard SJ
    Acc Chem Res; 2009 Jan; 42(1):193-203. PubMed ID: 18989940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bright fluorescent chemosensor platforms for imaging endogenous pools of neuronal zinc.
    Chang CJ; Nolan EM; Jaworski J; Burdette SC; Sheng M; Lippard SJ
    Chem Biol; 2004 Feb; 11(2):203-10. PubMed ID: 15123282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an iminocoumarin-based zinc sensor suitable for ratiometric fluorescence imaging of neuronal zinc.
    Komatsu K; Urano Y; Kojima H; Nagano T
    J Am Chem Soc; 2007 Nov; 129(44):13447-54. PubMed ID: 17927174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and characterization of zinc sensors based on a monosubstituted fluorescein platform.
    Nolan EM; Burdette SC; Harvey JH; Hilderbrand SA; Lippard SJ
    Inorg Chem; 2004 Apr; 43(8):2624-35. PubMed ID: 15074981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Midrange affinity fluorescent Zn(II) sensors of the Zinpyr family: syntheses, characterization, and biological imaging applications.
    Nolan EM; Jaworski J; Racine ME; Sheng M; Lippard SJ
    Inorg Chem; 2006 Nov; 45(24):9748-57. PubMed ID: 17112271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaction-Based Probes for Imaging Mobile Zinc in Live Cells and Tissues.
    Zastrow ML; Radford RJ; Chyan W; Anderson CT; Zhang DY; Loas A; Tzounopoulos T; Lippard SJ
    ACS Sens; 2016 Jan; 1(1):32-39. PubMed ID: 26878065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The zinspy family of fluorescent zinc sensors: syntheses and spectroscopic investigations.
    Nolan EM; Lippard SJ
    Inorg Chem; 2004 Dec; 43(26):8310-7. PubMed ID: 15606177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemistry of mobile zinc and nitric oxide revealed by fluorescent sensors.
    Pluth MD; Tomat E; Lippard SJ
    Annu Rev Biochem; 2011; 80():333-55. PubMed ID: 21675918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A ratiometric fluorescent core-shell nanoprobe for sensing and imaging of zinc(II) in living cell and zebrafish.
    Chen W; Wang Q; Ma J; Li CW; Yang M; Yi C
    Mikrochim Acta; 2018 Oct; 185(11):523. PubMed ID: 30374608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel, cell-permeable, fluorescent probe for ratiometric imaging of zinc ion.
    Maruyama S; Kikuchi K; Hirano T; Urano Y; Nagano T
    J Am Chem Soc; 2002 Sep; 124(36):10650-1. PubMed ID: 12207508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. His-tags as Zn(II) binding motifs in a protein-based fluorescent sensor.
    Evers TH; Appelhof MA; Meijer EW; Merkx M
    Protein Eng Des Sel; 2008 Aug; 21(8):529-36. PubMed ID: 18502789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analyzing free zinc(II) ion concentrations in cell biology with fluorescent chelating molecules.
    Maret W
    Metallomics; 2015 Feb; 7(2):202-11. PubMed ID: 25362967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective zinc sensor molecules with various affinities for Zn2+, revealing dynamics and regional distribution of synaptically released Zn2+ in hippocampal slices.
    Komatsu K; Kikuchi K; Kojima H; Urano Y; Nagano T
    J Am Chem Soc; 2005 Jul; 127(29):10197-204. PubMed ID: 16028930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zinspy sensors with enhanced dynamic range for imaging neuronal cell zinc uptake and mobilization.
    Nolan EM; Ryu JW; Jaworski J; Feazell RP; Sheng M; Lippard SJ
    J Am Chem Soc; 2006 Dec; 128(48):15517-28. PubMed ID: 17132019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-trappable quinoline-derivatized fluoresceins for selective and reversible biological Zn(II) detection.
    McQuade LE; Lippard SJ
    Inorg Chem; 2010 Oct; 49(20):9535-45. PubMed ID: 20849126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-photon fluorescence sensors for imaging NMDA receptors and monitoring release of Zn
    Chen X; Lim CS; Lee D; Lee S; Park SJ; Kim HM; Yoon J
    Biosens Bioelectron; 2017 May; 91():770-779. PubMed ID: 28152484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-Photon Ratiometric Fluorescence Probe with Enhanced Absorption Cross Section for Imaging and Biosensing of Zinc Ions in Hippocampal Tissue and Zebrafish.
    Li W; Fang B; Jin M; Tian Y
    Anal Chem; 2017 Feb; 89(4):2553-2560. PubMed ID: 28192925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and synthesis of coumarin-based Zn(2+) probes for ratiometric fluorescence imaging.
    Mizukami S; Okada S; Kimura S; Kikuchi K
    Inorg Chem; 2009 Aug; 48(16):7630-8. PubMed ID: 19591460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromis-1, a Ratiometric Fluorescent Probe Optimized for Two-Photon Microscopy Reveals Dynamic Changes in Labile Zn(II) in Differentiating Oligodendrocytes.
    Bourassa D; Elitt CM; McCallum AM; Sumalekshmy S; McRae RL; Morgan MT; Siegel N; Perry JW; Rosenberg PA; Fahrni CJ
    ACS Sens; 2018 Feb; 3(2):458-467. PubMed ID: 29431427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 8-Aminoquinoline-based ratiometric zinc probe: unexpected binding mode and its application in living cells.
    Zhang L; Cui X; Sun J; Wang Y; Li W; Fang J
    Bioorg Med Chem Lett; 2013 Jun; 23(12):3511-4. PubMed ID: 23668987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.