These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 1899021)
1. Grafting of a calcium-binding loop of thermolysin to Bacillus subtilis neutral protease. Toma S; Campagnoli S; Margarit I; Gianna R; Grandi G; Bolognesi M; De Filippis V; Fontana A Biochemistry; 1991 Jan; 30(1):97-106. PubMed ID: 1899021 [TBL] [Abstract][Full Text] [Related]
2. The effect of engineering surface loops on the thermal stability of Bacillus subtilis neutral protease. Hardy F; Vriend G; van der Vinne B; Frigerio F; Grandi G; Venema G; Eijsink VG Protein Eng; 1994 Mar; 7(3):425-30. PubMed ID: 8177891 [TBL] [Abstract][Full Text] [Related]
3. Contribution of the C-terminal amino acid to the stability of Bacillus subtilis neutral protease. Eijsink VG; Vriend G; Van Den Burg B; Venema G; Stulp BK Protein Eng; 1990 Oct; 4(1):99-104. PubMed ID: 2127107 [TBL] [Abstract][Full Text] [Related]
4. Role of calcium ions in the thermostability of thermolysin and Bacillus subtilis var. amylosacchariticus neutral protease. Tajima M; Urabe I; Yutani K; Okada H Eur J Biochem; 1976 Apr; 64(1):243-7. PubMed ID: 819262 [TBL] [Abstract][Full Text] [Related]
5. Structural features of neutral protease from Bacillus subtilis deduced from model-building and limited proteolysis experiments. Signor G; Vita C; Fontana A; Frigerio F; Bolognesi M; Toma S; Gianna R; De Gregoriis E; Grandi G Eur J Biochem; 1990 Apr; 189(2):221-7. PubMed ID: 2110895 [TBL] [Abstract][Full Text] [Related]
6. Thermal stability of homologous neutral metalloendopeptidases in thermophilic and mesophilic bacteria: structural considerations. Pangburn MK; Levy PL; Walsh KA; Neurath H Experientia Suppl; 1976; 26():19-30. PubMed ID: 820564 [TBL] [Abstract][Full Text] [Related]
7. Autolysis of thermolysin. Isolation and characterization of a folded three-fragment complex. Fassina G; Vita C; Dalzoppo D; Zamai M; Zambonin M; Fontana A Eur J Biochem; 1986 Apr; 156(2):221-8. PubMed ID: 3084249 [TBL] [Abstract][Full Text] [Related]
8. Thermolysin and Bacillus subtilis neutral protease. Conformation and stability of two homologous neutral metalloendopeptidases. Grandi C; Vita C; Dalzoppo D; Fontana A Int J Pept Protein Res; 1980 Oct; 16(4):327-38. PubMed ID: 6780484 [TBL] [Abstract][Full Text] [Related]
9. Engineering of the pH-dependence of thermolysin activity as examined by site-directed mutagenesis of Asn112 located at the active site of thermolysin. Kusano M; Yasukawa K; Hashida Y; Inouye K J Biochem; 2006 Jun; 139(6):1017-23. PubMed ID: 16788052 [TBL] [Abstract][Full Text] [Related]
10. Cloning and expression of a novel protease gene encoding an extracellular neutral protease from Bacillus subtilis. Tran L; Wu XC; Wong SL J Bacteriol; 1991 Oct; 173(20):6364-72. PubMed ID: 1917867 [TBL] [Abstract][Full Text] [Related]
11. Role of bound calcium ions in thermostable, proteolytic enzymes. Separation of intrinsic and calcium ion contributions to the kinetic thermal stability. Voordouw G; Milo C; Roche RS Biochemistry; 1976 Aug; 15(17):3716-24. PubMed ID: 8092 [TBL] [Abstract][Full Text] [Related]
12. Mutational effect for stability in a conserved region of thermolysin. Matsumiya Y; Nishikawa K; Inouye K; Kubo M Lett Appl Microbiol; 2005; 40(5):329-34. PubMed ID: 15836734 [TBL] [Abstract][Full Text] [Related]
13. Cumulative stabilizing effects of hydrophobic interactions on the surface of the neutral protease from Bacillus subtilis. Frigerio F; Margarit I; Nogarotto R; de Filippis V; Grandi G Protein Eng; 1996 May; 9(5):439-45. PubMed ID: 8795044 [TBL] [Abstract][Full Text] [Related]
14. Introduction of a stabilizing 10 residue beta-hairpin in Bacillus subtilis neutral protease. Eijsink VG; Vriend G; van den Burg B; van der Zee JR; Veltman OR; Stulp BK; Venema G Protein Eng; 1992 Mar; 5(2):157-63. PubMed ID: 1594570 [TBL] [Abstract][Full Text] [Related]
16. Rendering one autolysis site in Bacillus subtilis neutral protease resistant to cleavage reveals a new fission. Van den Burg B; Eijsink VG; Vriend G; Veltman OR; Venema G Biotechnol Appl Biochem; 1998 Apr; 27(2):125-32. PubMed ID: 9569607 [TBL] [Abstract][Full Text] [Related]
17. Zinc protease of Bacillus subtilis var. amylosacchariticus: construction of a three-dimensional model and comparison with thermolysin. Tsuru D; Imajo S; Morikawa S; Yoshimoto T; Ishiguro M J Biochem; 1993 Jan; 113(1):101-5. PubMed ID: 8454566 [TBL] [Abstract][Full Text] [Related]
18. The role of the pro-sequence in the processing and secretion of the thermolysin-like neutral protease from Bacillus cereus. Wetmore DR; Wong SL; Roche RS Mol Microbiol; 1992 Jun; 6(12):1593-604. PubMed ID: 1495388 [TBL] [Abstract][Full Text] [Related]
19. Analysis of autodegradation sites of thermolysin and enhancement of its thermostability by modifying Leu155 at an autodegradation site. Matsumiya Y; Nishikawa K; Aoshima H; Inouye K; Kubo M J Biochem; 2004 Apr; 135(4):547-53. PubMed ID: 15115781 [TBL] [Abstract][Full Text] [Related]
20. Model building of a thermolysin-like protease by mutagenesis. Frigerio F; Margarit I; Nogarotto R; Grandi G; Vriend G; Hardy F; Veltman OR; Venema G; Eijsink VG Protein Eng; 1997 Mar; 10(3):223-30. PubMed ID: 9153087 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]