BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 1899021)

  • 1. Grafting of a calcium-binding loop of thermolysin to Bacillus subtilis neutral protease.
    Toma S; Campagnoli S; Margarit I; Gianna R; Grandi G; Bolognesi M; De Filippis V; Fontana A
    Biochemistry; 1991 Jan; 30(1):97-106. PubMed ID: 1899021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of engineering surface loops on the thermal stability of Bacillus subtilis neutral protease.
    Hardy F; Vriend G; van der Vinne B; Frigerio F; Grandi G; Venema G; Eijsink VG
    Protein Eng; 1994 Mar; 7(3):425-30. PubMed ID: 8177891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of the C-terminal amino acid to the stability of Bacillus subtilis neutral protease.
    Eijsink VG; Vriend G; Van Den Burg B; Venema G; Stulp BK
    Protein Eng; 1990 Oct; 4(1):99-104. PubMed ID: 2127107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of calcium ions in the thermostability of thermolysin and Bacillus subtilis var. amylosacchariticus neutral protease.
    Tajima M; Urabe I; Yutani K; Okada H
    Eur J Biochem; 1976 Apr; 64(1):243-7. PubMed ID: 819262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural features of neutral protease from Bacillus subtilis deduced from model-building and limited proteolysis experiments.
    Signor G; Vita C; Fontana A; Frigerio F; Bolognesi M; Toma S; Gianna R; De Gregoriis E; Grandi G
    Eur J Biochem; 1990 Apr; 189(2):221-7. PubMed ID: 2110895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal stability of homologous neutral metalloendopeptidases in thermophilic and mesophilic bacteria: structural considerations.
    Pangburn MK; Levy PL; Walsh KA; Neurath H
    Experientia Suppl; 1976; 26():19-30. PubMed ID: 820564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autolysis of thermolysin. Isolation and characterization of a folded three-fragment complex.
    Fassina G; Vita C; Dalzoppo D; Zamai M; Zambonin M; Fontana A
    Eur J Biochem; 1986 Apr; 156(2):221-8. PubMed ID: 3084249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermolysin and Bacillus subtilis neutral protease. Conformation and stability of two homologous neutral metalloendopeptidases.
    Grandi C; Vita C; Dalzoppo D; Fontana A
    Int J Pept Protein Res; 1980 Oct; 16(4):327-38. PubMed ID: 6780484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering of the pH-dependence of thermolysin activity as examined by site-directed mutagenesis of Asn112 located at the active site of thermolysin.
    Kusano M; Yasukawa K; Hashida Y; Inouye K
    J Biochem; 2006 Jun; 139(6):1017-23. PubMed ID: 16788052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning and expression of a novel protease gene encoding an extracellular neutral protease from Bacillus subtilis.
    Tran L; Wu XC; Wong SL
    J Bacteriol; 1991 Oct; 173(20):6364-72. PubMed ID: 1917867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of bound calcium ions in thermostable, proteolytic enzymes. Separation of intrinsic and calcium ion contributions to the kinetic thermal stability.
    Voordouw G; Milo C; Roche RS
    Biochemistry; 1976 Aug; 15(17):3716-24. PubMed ID: 8092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutational effect for stability in a conserved region of thermolysin.
    Matsumiya Y; Nishikawa K; Inouye K; Kubo M
    Lett Appl Microbiol; 2005; 40(5):329-34. PubMed ID: 15836734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cumulative stabilizing effects of hydrophobic interactions on the surface of the neutral protease from Bacillus subtilis.
    Frigerio F; Margarit I; Nogarotto R; de Filippis V; Grandi G
    Protein Eng; 1996 May; 9(5):439-45. PubMed ID: 8795044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Introduction of a stabilizing 10 residue beta-hairpin in Bacillus subtilis neutral protease.
    Eijsink VG; Vriend G; van den Burg B; van der Zee JR; Veltman OR; Stulp BK; Venema G
    Protein Eng; 1992 Mar; 5(2):157-63. PubMed ID: 1594570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence by site-directed mutagenesis that arginine 203 of thermolysin and arginine 717 of neprilysin (neutral endopeptidase) play equivalent critical roles in substrate hydrolysis and inhibitor binding.
    Marie-Claire C; Ruffet E; Antonczak S; Beaumont A; O'Donohue M; Roques BP; FourniƩ-Zaluski MC
    Biochemistry; 1997 Nov; 36(45):13938-45. PubMed ID: 9374873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rendering one autolysis site in Bacillus subtilis neutral protease resistant to cleavage reveals a new fission.
    Van den Burg B; Eijsink VG; Vriend G; Veltman OR; Venema G
    Biotechnol Appl Biochem; 1998 Apr; 27(2):125-32. PubMed ID: 9569607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zinc protease of Bacillus subtilis var. amylosacchariticus: construction of a three-dimensional model and comparison with thermolysin.
    Tsuru D; Imajo S; Morikawa S; Yoshimoto T; Ishiguro M
    J Biochem; 1993 Jan; 113(1):101-5. PubMed ID: 8454566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of the pro-sequence in the processing and secretion of the thermolysin-like neutral protease from Bacillus cereus.
    Wetmore DR; Wong SL; Roche RS
    Mol Microbiol; 1992 Jun; 6(12):1593-604. PubMed ID: 1495388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of autodegradation sites of thermolysin and enhancement of its thermostability by modifying Leu155 at an autodegradation site.
    Matsumiya Y; Nishikawa K; Aoshima H; Inouye K; Kubo M
    J Biochem; 2004 Apr; 135(4):547-53. PubMed ID: 15115781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model building of a thermolysin-like protease by mutagenesis.
    Frigerio F; Margarit I; Nogarotto R; Grandi G; Vriend G; Hardy F; Veltman OR; Venema G; Eijsink VG
    Protein Eng; 1997 Mar; 10(3):223-30. PubMed ID: 9153087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.