These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 1899021)
21. Effects of site-directed mutagenesis of the surface residues Gln128 and Gln225 of thermolysin on its catalytic activity. Tatsumi C; Hashida Y; Yasukawa K; Inouye K J Biochem; 2007 Jun; 141(6):835-42. PubMed ID: 17405799 [TBL] [Abstract][Full Text] [Related]
22. Semisynthesis of carboxy-terminal fragments of thermolysin. De Filippis V; Fontana A Int J Pept Protein Res; 1990 Mar; 35(3):219-27. PubMed ID: 2113042 [TBL] [Abstract][Full Text] [Related]
23. The role of bound calcium ions in thermostable, proteolytic enzymes. II. Studies on thermolysin, the thermostable protease from Bacillus thermoproteolyticus. Voordouw G; Roche RS Biochemistry; 1975 Oct; 14(21):4667-73. PubMed ID: 1182109 [TBL] [Abstract][Full Text] [Related]
24. Mutational analysis of a surface area that is critical for the thermal stability of thermolysin-like proteases. Veltman OR; Vriend G; Hardy F; Mansfeld J; van den Burg B; Venema G; Eijsink VG Eur J Biochem; 1997 Sep; 248(2):433-40. PubMed ID: 9346299 [TBL] [Abstract][Full Text] [Related]
25. Cumulative stabilizing effects of glycine to alanine substitutions in Bacillus subtilis neutral protease. Margarit I; Campagnoli S; Frigerio F; Grandi G; De Filippis V; Fontana A Protein Eng; 1992 Sep; 5(6):543-50. PubMed ID: 1438165 [TBL] [Abstract][Full Text] [Related]
26. Chemical modification of neutral protease from Bacillus subtilis var. amylosacchariticus: assignment of tyrosyl residues iodinated. Morikawa S; Kanatani A; Kobayashi R; Yoshimoto T; Tsuru D Agric Biol Chem; 1991 Nov; 55(11):2751-6. PubMed ID: 1368747 [TBL] [Abstract][Full Text] [Related]
27. Incorporation of a stabilizing Ca(2+)-binding loop into subtilisin BPN'. Braxton S; Wells JA Biochemistry; 1992 Sep; 31(34):7796-801. PubMed ID: 1510966 [TBL] [Abstract][Full Text] [Related]
28. Cloning and expression in Bacillus subtilis of the npr gene from Bacillus thermoproteolyticus Rokko coding for the thermostable metalloprotease thermolysin. O'Donohue MJ; Roques BP; Beaumont A Biochem J; 1994 Jun; 300 ( Pt 2)(Pt 2):599-603. PubMed ID: 8002967 [TBL] [Abstract][Full Text] [Related]
29. Phospholipase A2 engineering. Deletion of the C-terminus segment changes substrate specificity and uncouples calcium and substrate binding at the zwitterionic interface. Huang B; Yu BZ; Rogers J; Byeon IJ; Sekar K; Chen X; Sundaralingam M; Tsai MD; Jain MK Biochemistry; 1996 Sep; 35(37):12164-74. PubMed ID: 8810924 [TBL] [Abstract][Full Text] [Related]
30. Effects of site-directed mutagenesis in the N-terminal domain of thermolysin on its stabilization. Kawasaki Y; Yasukawa K; Inouye K J Biochem; 2013 Jan; 153(1):85-92. PubMed ID: 23087322 [TBL] [Abstract][Full Text] [Related]
31. Cloning, sequencing and expression of the gene encoding the extracellular neutral protease, vibriolysin, of Vibrio proteolyticus. David VA; Deutch AH; Sloma A; Pawlyk D; Ally A; Durham DR Gene; 1992 Mar; 112(1):107-12. PubMed ID: 1551587 [TBL] [Abstract][Full Text] [Related]
32. Site-specific and random immobilization of thermolysin-like proteases reflected in the thermal inactivation kinetics. Mansfeld J; Ulbrich-Hofmann R Biotechnol Appl Biochem; 2000 Dec; 32(3):189-95. PubMed ID: 11115391 [TBL] [Abstract][Full Text] [Related]
33. Degradation of streptomyces metalloprotease inhibitor (SMPI) by neutral protease from Bacillus subtilis var. amylosacchariticus. Tsuru D; Fujita Y; Morikawa S; Ito K; Yoshimoto T Biosci Biotechnol Biochem; 1992 Aug; 56(8):1275-8. PubMed ID: 1368840 [TBL] [Abstract][Full Text] [Related]
34. Effect of the weak Ca(2+)-binding site of subtilisin J by site-directed mutagenesis on heat stability. Jang JS; Bae KH; Byun SM Biochem Biophys Res Commun; 1992 Oct; 188(1):184-9. PubMed ID: 1358066 [TBL] [Abstract][Full Text] [Related]
35. Increasing the thermostability of a neutral protease by replacing positively charged amino acids in the N-terminal turn of alpha-helices. Eijsink VG; Vriend G; van den Burg B; van der Zee JR; Venema G Protein Eng; 1992 Mar; 5(2):165-70. PubMed ID: 1594571 [TBL] [Abstract][Full Text] [Related]
36. Prediction and analysis of structure, stability and unfolding of thermolysin-like proteases. Vriend G; Eijsink V J Comput Aided Mol Des; 1993 Aug; 7(4):367-96. PubMed ID: 8229092 [TBL] [Abstract][Full Text] [Related]
37. Introduction of disulfide bonds into Bacillus subtilis neutral protease. van den Burg B; Dijkstra BW; van der Vinne B; Stulp BK; Eijsink VG; Venema G Protein Eng; 1993 Jul; 6(5):521-7. PubMed ID: 8415578 [TBL] [Abstract][Full Text] [Related]
38. A single calcium binding site is crucial for the calcium-dependent thermal stability of thermolysin-like proteases. Veltman OR; Vriend G; Berendsen HJ; Van den Burg B; Venema G; Eijsink VG Biochemistry; 1998 Apr; 37(15):5312-9. PubMed ID: 9548763 [TBL] [Abstract][Full Text] [Related]
39. Evidence of homologous relationship between thermolysin and neutral protease A of Bacillus subtilis. Levy PL; Pangburn MK; Burstein Y; Ericsson LH; Neurath H; Walsh KA Proc Natl Acad Sci U S A; 1975 Nov; 72(11):4341-5. PubMed ID: 812093 [TBL] [Abstract][Full Text] [Related]
40. Enhancement of the thermostability of subtilisin E by introduction of a disulfide bond engineered on the basis of structural comparison with a thermophilic serine protease. Takagi H; Takahashi T; Momose H; Inouye M; Maeda Y; Matsuzawa H; Ohta T J Biol Chem; 1990 Apr; 265(12):6874-8. PubMed ID: 2108962 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]