These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

656 related articles for article (PubMed ID: 18990483)

  • 1. Application of a hierarchical framework for assessing environmental impacts of dam operation: changes in streamflow, bed mobility and recruitment of riparian trees in a western North American river.
    Burke M; Jorde K; Buffington JM
    J Environ Manage; 2009 Jul; 90 Suppl 3():S224-36. PubMed ID: 18990483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impacts of water resources development on flow regimes in the Brazos River.
    Vogl AL; Lopes VL
    Environ Monit Assess; 2009 Oct; 157(1-4):331-45. PubMed ID: 18819012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Examining the economic impacts of hydropower dams on property values using GIS.
    Bohlen C; Lewis LY
    J Environ Manage; 2009 Jul; 90 Suppl 3():S258-69. PubMed ID: 19022554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental flows and water quality objectives for the River Murray.
    Gippel C; Jacobs T; McLeod T
    Water Sci Technol; 2002; 45(11):251-60. PubMed ID: 12171360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A micro case study of the legal and administrative arrangements for river health in the Kangaroo River (NSW).
    Mooney C; Farrier D
    Water Sci Technol; 2002; 45(11):161-8. PubMed ID: 12171348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Records of pan (floodplain wetland) sedimentation as an approach for post-hoc investigation of the hydrological impacts of dam impoundment: The Pongolo river, KwaZulu-Natal.
    Heath SK; Plater AJ
    Water Res; 2010 Jul; 44(14):4226-40. PubMed ID: 20561667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a spatially-distributed hydroecological model to simulate cottonwood seedling recruitment along rivers.
    Benjankar R; Burke M; Yager E; Tonina D; Egger G; Rood SB; Merz N
    J Environ Manage; 2014 Dec; 145():277-88. PubMed ID: 25086325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Social impacts of large dam projects: a comparison of international case studies and implications for best practice.
    Tilt B; Braun Y; He D
    J Environ Manage; 2009 Jul; 90 Suppl 3():S249-57. PubMed ID: 19008036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A linked spatial and temporal model of the chemical and biological status of a large, acid-sensitive river network.
    Evans CD; Cooper DM; Juggins S; Jenkins A; Norris D
    Sci Total Environ; 2006 Jul; 365(1-3):167-85. PubMed ID: 16580046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the impact of changes in landuse and management practices on the diffuse pollution and retention of nitrate in a riparian floodplain.
    Krause S; Jacobs J; Voss A; Bronstert A; Zehe E
    Sci Total Environ; 2008 Jan; 389(1):149-64. PubMed ID: 17915291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Downstream morphological change in response to dam construction: a GIS based approach for the Lower Ord River, Western Australia.
    Cluett LJ; Radford BT
    Water Sci Technol; 2003; 48(7):1-8. PubMed ID: 14653628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fragmentation and flow regulation of the world's large river systems.
    Nilsson C; Reidy CA; Dynesius M; Revenga C
    Science; 2005 Apr; 308(5720):405-8. PubMed ID: 15831757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response to environmental flows in the lower Tarim River, Xinjiang, China: ground water.
    Hou P; Beeton RJ; Carter RW; Dong XG; Li X
    J Environ Manage; 2007 Jun; 83(4):371-82. PubMed ID: 16996199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaporative isotope enrichment as a constraint on reach water balance along a dryland river.
    Gibson JJ; Sadek MA; Stone DJ; Hughes CE; Hankin S; Cendon DI; Hollins SE
    Isotopes Environ Health Stud; 2008 Mar; 44(1):83-98. PubMed ID: 18320430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water quality modeling to determine minimum instream flow for fish survival in tidal rivers.
    Liu WC; Liu SY; Hsu MH; Kuo AY
    J Environ Manage; 2005 Sep; 76(4):293-308. PubMed ID: 15927355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stream and riparian management for freshwater turtles.
    Bodie JR
    J Environ Manage; 2001 Aug; 62(4):443-55. PubMed ID: 11505769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental water in a regulated river system: the Murrumbidgee River planning approach to the determination of environmental needs.
    Shields J; Good R
    Water Sci Technol; 2002; 45(11):241-9. PubMed ID: 12171359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of hydraulic fish habitat condition using integrated toolkit: a case study of the Geum river basin, Republic of Korea.
    Park S; Kim J; Ko IH; Arthington A; Jones G; Yum KT
    Water Sci Technol; 2010; 62(12):2811-8. PubMed ID: 21123910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the influence of Environmental Impact Assessments on science and policy: an analysis of the Three Gorges Project.
    Tullos D
    J Environ Manage; 2009 Jul; 90 Suppl 3():S208-23. PubMed ID: 19026482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive management of flows in the lower Roanoke River, North Carolina, USA.
    Pearsall SH; McCrodden BJ; Townsend PA
    Environ Manage; 2005 Apr; 35(4):353-67. PubMed ID: 15891942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.