BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 1899052)

  • 1. Phenotypic and functional heterogeneity of thymic and splenic lymphokine activated killer cells relative to ornithine sensitivity.
    Mehrotra P; Bear HD; Susskind BM
    Cell Immunol; 1991 Feb; 132(2):451-65. PubMed ID: 1899052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential sensitivity of cytotoxic T lymphocytes and lymphokine-activated killer cells to inhibition by L-ornithine.
    Susskind BM; Sekar J; Tandon PM; Lind DS; Bear HD
    Cell Immunol; 1991 Mar; 133(1):41-54. PubMed ID: 1899361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asialo GM1 as an accessory molecule determining the function and reactivity of cytotoxic T lymphocytes.
    Hargrove ME; Ting CC
    Cell Immunol; 1988 Mar; 112(1):123-34. PubMed ID: 2449975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of the murine lymphokine-activated killer (LAK) cell phenomenon: dissection of effectors and progenitors into NK- and T-like cells.
    Kalland T; Belfrage H; Bhiladvala P; Hedlund G
    J Immunol; 1987 Jun; 138(11):3640-5. PubMed ID: 3495566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lymphokine-activated killer cells and aging in mice: significance for defining the precursor cell.
    Kawakami K; Bloom ET
    Mech Ageing Dev; 1987 Dec; 41(3):229-40. PubMed ID: 2892985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. rIL-4 differentially regulates rIL-2-induced murine NK and LAK killing in CD8+ and CD8- precursor cell subsets.
    Merrow MW; Huber BT
    Int Immunol; 1991 Jun; 3(6):551-61. PubMed ID: 1909562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Murine trophoblast can be killed by lymphokine-activated killer cells.
    Drake BL; Head JR
    J Immunol; 1989 Jul; 143(1):9-14. PubMed ID: 2499634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mouse tumors are heterogeneous in their susceptibility to syngeneic lymphokine-activated killer cells and delineate functional subsets in such effectors.
    Sensi M; Grazioli L; Rodolfo M; Parmiani G
    Cancer Immunol Immunother; 1990; 31(1):37-43. PubMed ID: 2306754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential expression of asialo GM1 on alloreactive cytotoxic T lymphocytes and lymphokine-activated killer cells.
    Ting CC; Hargrove ME; Wunderlich J; Loh NN
    Cell Immunol; 1987 Jan; 104(1):115-25. PubMed ID: 2948673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interleukin 7 enhances cytolytic T lymphocyte generation and induces lymphokine-activated killer cells from human peripheral blood.
    Alderson MR; Sassenfeld HM; Widmer MB
    J Exp Med; 1990 Aug; 172(2):577-87. PubMed ID: 2142722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the cytotoxic function of the thymocytes generated in a 14-day old mouse fetal thymus organ culture with high dose of IL-2.
    Leclercq G; de Smedt M; Tison B; Plum J
    Thymus; 1989; 13(1-2):95-102. PubMed ID: 2516374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lymphokine-activated killer (LAK) cells. IV. Characterization of murine LAK effector subpopulations.
    Ballas ZK; Rasmussen W
    J Immunol; 1990 Jan; 144(1):386-95. PubMed ID: 2104892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppression of alloimmune cytotoxic T lymphocyte (CTL) generation by depletion of NK cells and restoration by interferon and/or interleukin 2.
    Suzuki R; Suzuki S; Ebina N; Kumagai K
    J Immunol; 1985 Apr; 134(4):2139-48. PubMed ID: 2579129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lymphokine-activated killer (LAK) cells. VI. NK1.1+, CD3+ LAK effectors are derived from CD4-, CD8-, NK1.1- precursors.
    Ballas ZK; Rasmussen W
    Cell Immunol; 1991 May; 134(2):296-313. PubMed ID: 1827045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gelatin sponge model of effector recruitment: tumoricidal activity of adherent and non-adherent lymphokine-activated killer cells after culture in interleukin-2.
    Akporiaye ET; Barbieri CA; Stewart CC; Bender JG
    J Leukoc Biol; 1991 Feb; 49(2):189-96. PubMed ID: 1991999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of macrophages on interleukin-2 (IL-2)- and IL-4-induced murine lymphokine-activated killer activity.
    Tunru IS; Suzuki H; Yano S
    Int J Cancer; 1991 Jun; 48(4):568-73. PubMed ID: 2045201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo boosting of lung natural killer and lymphokine-activated killer cell activity by interleukin-2: comparison of systemic, intrapleural and inhalation routes.
    Flexman JP; Manning LS; Robinson BW
    Clin Exp Immunol; 1990 Oct; 82(1):151-6. PubMed ID: 2208789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of granulocyte-macrophage colony-stimulating factor on lymphokine-activated killer cell induction.
    Stewart-Akers AM; Cairns JS; Tweardy DJ; McCarthy SA
    Blood; 1993 May; 81(10):2671-8. PubMed ID: 8490177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactive effects of alpha-interferon A/D and interleukin 2 on murine lymphokine-activated killer activity: analysis at the effector and precursor level.
    Chikkala NF; Lewis I; Ulchaker J; Stanley J; Tubbs R; Finke JH
    Cancer Res; 1990 Feb; 50(4):1176-82. PubMed ID: 2297766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of IL-2 in vitro on CTL generation in spleen cells of young and old mice: asialo GM1+ cells are required for the apparent restoration of the CTL response.
    Bloom ET; Kubota LF
    Cell Immunol; 1989 Mar; 119(1):73-84. PubMed ID: 2784081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.