BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 18990647)

  • 1. Brain activity-based image classification from rapid serial visual presentation.
    Bigdely-Shamlo N; Vankov A; Ramirez RR; Makeig S
    IEEE Trans Neural Syst Rehabil Eng; 2008 Oct; 16(5):432-41. PubMed ID: 18990647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A single-trial analytic framework for EEG analysis and its application to target detection and classification.
    Poolman P; Frank RM; Luu P; Pederson SM; Tucker DM
    Neuroimage; 2008 Aug; 42(2):787-98. PubMed ID: 18555700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortically coupled computer vision for rapid image search.
    Gerson AD; Parra LC; Sajda P
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):174-9. PubMed ID: 16792287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visual spatial attention tracking using high-density SSVEP data for independent brain-computer communication.
    Kelly SP; Lalor EC; Reilly RB; Foxe JJ
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):172-8. PubMed ID: 16003896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An online brain-computer interface using non-flashing visual evoked potentials.
    Liu T; Goldberg L; Gao S; Hong B
    J Neural Eng; 2010 Jun; 7(3):036003. PubMed ID: 20404396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ERPs evoked by different matrix sizes: implications for a brain computer interface (BCI) system.
    Allison BZ; Pineda JA
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):110-3. PubMed ID: 12899248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulator selection in SSVEP-based BCI.
    Wu Z; Lai Y; Xia Y; Wu D; Yao D
    Med Eng Phys; 2008 Oct; 30(8):1079-88. PubMed ID: 18316226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components.
    Müller-Putz GR; Scherer R; Brauneis C; Pfurtscheller G
    J Neural Eng; 2005 Dec; 2(4):123-30. PubMed ID: 16317236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of three brain-computer interfaces based on event-related desynchronization, steady state visual evoked potentials, or a hybrid approach using both signals.
    Brunner C; Allison BZ; Altstätter C; Neuper C
    J Neural Eng; 2011 Apr; 8(2):025010. PubMed ID: 21436538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A brain-computer interface using motion-onset visual evoked potential.
    Guo F; Hong B; Gao X; Gao S
    J Neural Eng; 2008 Dec; 5(4):477-85. PubMed ID: 19015582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. P300-based brain computer interface: reliability and performance in healthy and paralysed participants.
    Piccione F; Giorgi F; Tonin P; Priftis K; Giove S; Silvoni S; Palmas G; Beverina F
    Clin Neurophysiol; 2006 Mar; 117(3):531-7. PubMed ID: 16458069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple channel detection of steady-state visual evoked potentials for brain-computer interfaces.
    Friman O; Volosyak I; Gräser A
    IEEE Trans Biomed Eng; 2007 Apr; 54(4):742-50. PubMed ID: 17405382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-epoch analysis of interleaved evoked potentials and fMRI responses during steady-state visual stimulation.
    Bianciardi M; Bianchi L; Garreffa G; Abbafati M; Di Russo F; Marciani MG; Macaluso E
    Clin Neurophysiol; 2009 Apr; 120(4):738-47. PubMed ID: 19250866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A high-speed BCI based on code modulation VEP.
    Bin G; Gao X; Wang Y; Li Y; Hong B; Gao S
    J Neural Eng; 2011 Apr; 8(2):025015. PubMed ID: 21436527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cortical origins of response time variability during rapid discrimination of visual objects.
    Gerson AD; Parra LC; Sajda P
    Neuroimage; 2005 Nov; 28(2):342-53. PubMed ID: 16169748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relationship between local and global processing and the processing of high and low spatial frequencies studied by event-related potentials and source modeling.
    Boeschoten MA; Kemner C; Kenemans JL; Engeland Hv
    Brain Res Cogn Brain Res; 2005 Jul; 24(2):228-36. PubMed ID: 15993761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual spatial attention control in an independent brain-computer interface.
    Kelly SP; Lalor EC; Finucane C; McDarby G; Reilly RB
    IEEE Trans Biomed Eng; 2005 Sep; 52(9):1588-96. PubMed ID: 16189972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Online classification of single EEG trials during finger movements.
    Lehtonen J; Jylänki P; Kauhanen L; Sams M
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):713-20. PubMed ID: 18270008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EEG-based assessment of driver cognitive responses in a dynamic virtual-reality driving environment.
    Lin CT; Chung IF; Ko LW; Chen YC; Liang SF; Duann JR
    IEEE Trans Biomed Eng; 2007 Jul; 54(7):1349-52. PubMed ID: 17605367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.