These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 18990651)

  • 1. Sensitivity of accelerometry to assess balance control during sit-to-stand movement.
    Janssen WG; Külcü DG; Horemans HL; Stam HJ; Bussmann JB
    IEEE Trans Neural Syst Rehabil Eng; 2008 Oct; 16(5):479-84. PubMed ID: 18990651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of motor strategies in sit-to-stand and back-to-sit motions between healthy and Alzheimer's disease elderly subjects.
    Manckoundia P; Mourey F; Pfitzenmeyer P; Papaxanthis C
    Neuroscience; 2006; 137(2):385-92. PubMed ID: 16289889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of standing balance in diabetic patients with and without peripheral neuropathy using accelerometers.
    Turcot K; Allet L; Golay A; Hoffmeyer P; Armand S
    Clin Biomech (Bristol); 2009 Nov; 24(9):716-21. PubMed ID: 19683372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validity of accelerometry in assessing the duration of the sit-to-stand movement.
    Janssen WG; Bussmann JB; Horemans HL; Stam HJ
    Med Biol Eng Comput; 2008 Sep; 46(9):879-87. PubMed ID: 18626677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of a known sequence of motions and postures from accelerometry data using adapted Gaussian mixture models.
    Allen FR; Ambikairajah E; Lovell NH; Celler BG
    Physiol Meas; 2006 Oct; 27(10):935-51. PubMed ID: 16951454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Audio-biofeedback for balance improvement: an accelerometry-based system.
    Chiari L; Dozza M; Cappello A; Horak FB; Macellari V; Giansanti D
    IEEE Trans Biomed Eng; 2005 Dec; 52(12):2108-11. PubMed ID: 16366234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical measurement of sit-to-stand performance in people with balance disorders: validity of data for the Five-Times-Sit-to-Stand Test.
    Whitney SL; Wrisley DM; Marchetti GF; Gee MA; Redfern MS; Furman JM
    Phys Ther; 2005 Oct; 85(10):1034-45. PubMed ID: 16180952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. "Patternizing" standards of sit-to-stand movements with support in cerebral palsy.
    Yonetsu R; Nitta O; Surya J
    NeuroRehabilitation; 2009; 25(4):289-96. PubMed ID: 20037222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Event standardization of sit-to-stand movements.
    Etnyre B; Thomas DQ
    Phys Ther; 2007 Dec; 87(12):1651-66. PubMed ID: 17940102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wearable Barometric Pressure Sensor to Improve Postural Transition Recognition of Mobility-Impaired Stroke Patients.
    Masse F; Gonzenbach R; Paraschiv-Ionescu A; Luft AR; Aminian K
    IEEE Trans Neural Syst Rehabil Eng; 2016 Nov; 24(11):1210-1217. PubMed ID: 27046903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A body-fixed-sensor-based analysis of power during sit-to-stand movements.
    Zijlstra W; Bisseling RW; Schlumbohm S; Baldus H
    Gait Posture; 2010 Feb; 31(2):272-8. PubMed ID: 19963386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of foot position and chair height on the asymmetry of vertical forces during sit-to-stand and stand-to-sit tasks in individuals with hemiparesis.
    Roy G; Nadeau S; Gravel D; Malouin F; McFadyen BJ; Piotte F
    Clin Biomech (Bristol); 2006 Jul; 21(6):585-93. PubMed ID: 16540217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in balance strategies between nonspecific chronic low back pain patients and healthy control subjects during unstable sitting.
    Van Daele U; Hagman F; Truijen S; Vorlat P; Van Gheluwe B; Vaes P
    Spine (Phila Pa 1976); 2009 May; 34(11):1233-8. PubMed ID: 19444072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determinants of sit-to-stand capability in the motor impaired elderly.
    Bernardi M; Rosponi A; Castellano V; Rodio A; Traballesi M; Delussu AS; Marchetti M
    J Electromyogr Kinesiol; 2004 Jun; 14(3):401-10. PubMed ID: 15094153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defining phases for the sit-to-walk movement.
    Kerr A; Durward B; Kerr KM
    Clin Biomech (Bristol); 2004 May; 19(4):385-90. PubMed ID: 15109759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of sit-to-stand and stand-to-sit transitions using a single inertial sensor.
    Rodríguez-Martín D; Samà A; Pérez-López C; Català A
    Stud Health Technol Inform; 2012; 177():113-7. PubMed ID: 22942040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection and classification of postural transitions in real-world conditions.
    Ganea R; Paraschiv-lonescu A; Aminian K
    IEEE Trans Neural Syst Rehabil Eng; 2012 Sep; 20(5):688-96. PubMed ID: 22692942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrasubject variability of selected force-platform parameters in the quantification of postural control.
    Geurts AC; Nienhuis B; Mulder TW
    Arch Phys Med Rehabil; 1993 Nov; 74(11):1144-50. PubMed ID: 8239951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postural sway parameters using a triaxial accelerometer: comparing elderly and young healthy adults.
    Martinez-Mendez R; Sekine M; Tamura T
    Comput Methods Biomech Biomed Engin; 2012; 15(9):899-910. PubMed ID: 21547782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical assessment of the sitting posture maintenance in patients with stroke.
    Genthon N; Vuillerme N; Monnet JP; Petit C; Rougier P
    Clin Biomech (Bristol); 2007 Nov; 22(9):1024-9. PubMed ID: 17850939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.