These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 18990652)

  • 1. Evaluation of head orientation and neck muscle EMG signals as command inputs to a human-computer interface for individuals with high tetraplegia.
    Williams MR; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2008 Oct; 16(5):485-96. PubMed ID: 18990652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of head orientation and neck muscle EMG signals as three-dimensional command sources.
    Williams MR; Kirsch RF
    J Neuroeng Rehabil; 2015 Mar; 12():25. PubMed ID: 25881286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Case study: Head orientation and neck electromyography for cursor control in persons with high cervical tetraplegia.
    Williams MR; Kirsch RF
    J Rehabil Res Dev; 2016; 53(4):519-30. PubMed ID: 27532681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced real-time cursor control algorithm, based on the spectral analysis of electromyograms.
    Chin CA; Barreto A; Adjouadi M
    Biomed Sci Instrum; 2006; 42():249-54. PubMed ID: 16817616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The integration of electromyogram and eye gaze tracking inputs for hands-free cursor control.
    Chin CA; Barreto A
    Biomed Sci Instrum; 2007; 43():152-7. PubMed ID: 17487073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facilitation handlings induce increase in electromyographic activity of muscles involved in head control of cerebral palsy children.
    Simon Ade S; do Pinho AS; Grazziotin Dos Santos C; Pagnussat Ade S
    Res Dev Disabil; 2014 Oct; 35(10):2547-57. PubMed ID: 25010566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated electromyogram and eye-gaze tracking cursor control system for computer users with motor disabilities.
    Chin CA; Barreto A; Cremades JG; Adjouadi M
    J Rehabil Res Dev; 2008; 45(1):161-74. PubMed ID: 18566935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and quantitative performance evaluation of a noninvasive EMG computer interface.
    Choi C; Micera S; Carpaneto J; Kim J
    IEEE Trans Biomed Eng; 2009 Jan; 56(1):188-91. PubMed ID: 19224732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel approach for electromyography-controlled prostheses based on facial action.
    Zhang X; Li R; Li H; Lu Z; Hu Y; Alhassan AB
    Med Biol Eng Comput; 2020 Nov; 58(11):2685-2698. PubMed ID: 32862364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A method for evaluating head-controlled computer input devices using Fitts' law.
    Radwin RG; Vanderheiden GC; Lin ML
    Hum Factors; 1990 Aug; 32(4):423-38. PubMed ID: 2150065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of command sources for a high tetraplegia neural prosthesis.
    Williams M; Kirsch R
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():4803-6. PubMed ID: 17271385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain-computer interface (BCI) operation: signal and noise during early training sessions.
    McFarland DJ; Sarnacki WA; Vaughan TM; Wolpaw JR
    Clin Neurophysiol; 2005 Jan; 116(1):56-62. PubMed ID: 15589184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-validated models of the relationships between neck muscle electromyography and three-dimensional head kinematics during gaze behavior.
    Farshadmanesh F; Byrne P; Keith GP; Wang H; Corneil BD; Crawford JD
    J Neurophysiol; 2012 Jan; 107(2):573-90. PubMed ID: 21994269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved identification of dystonic cervical muscles via abnormal muscle activity during isometric contractions.
    De Bruijn E; Nijmeijer SW; Forbes PA; Koelman JH; van der Helm FC; Tijssen MA; Happee R
    J Neurol Sci; 2015 Jul; 354(1-2):10-6. PubMed ID: 25972112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Widespread presaccadic recruitment of neck muscles by stimulation of the primate frontal eye fields.
    Elsley JK; Nagy B; Cushing SL; Corneil BD
    J Neurophysiol; 2007 Sep; 98(3):1333-54. PubMed ID: 17625064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array.
    Simeral JD; Kim SP; Black MJ; Donoghue JP; Hochberg LR
    J Neural Eng; 2011 Apr; 8(2):025027. PubMed ID: 21436513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An SEMG computer interface using three myoelectric sites for proportional two-dimensional cursor motion control and clicking for individuals with spinal cord injuries.
    Choi C; Na Y; Rim B; Kim Y; Kang S; Kim J
    Med Eng Phys; 2013 Jun; 35(6):777-83. PubMed ID: 22939517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forearm electromyographic changes with the use of a haptic force-feedback computer mouse.
    Dennerlein JT; DiMarino MH
    Hum Factors; 2006; 48(1):130-41. PubMed ID: 16696263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the usability of intramuscular EMG for prosthetic control: a Fitts' Law approach.
    Kamavuako EN; Scheme EJ; Englehart KB
    J Electromyogr Kinesiol; 2014 Oct; 24(5):770-7. PubMed ID: 25048642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.