These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 18990661)

  • 1. The critical layer in pipe flow at high Reynolds number.
    Viswanath D
    Philos Trans A Math Phys Eng Sci; 2009 Feb; 367(1888):561-76. PubMed ID: 18990661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lower branch coherent states in shear flows: transition and control.
    Wang J; Gibson J; Waleffe F
    Phys Rev Lett; 2007 May; 98(20):204501. PubMed ID: 17677701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly symmetric travelling waves in pipe flow.
    Pringle CC; Duguet Y; Kerswell RR
    Philos Trans A Math Phys Eng Sci; 2009 Feb; 367(1888):457-72. PubMed ID: 19000971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large- and very-large-scale motions in channel and boundary-layer flows.
    Balakumar BJ; Adrian RJ
    Philos Trans A Math Phys Eng Sci; 2007 Mar; 365(1852):665-81. PubMed ID: 17244580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Instability of streaks in pipe flow of shear-thinning fluids.
    López Carranza SN; Jenny M; Nouar C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):023005. PubMed ID: 24032922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical threshold in pipe flow transition.
    Mellibovsky F; Meseguer A
    Philos Trans A Math Phys Eng Sci; 2009 Feb; 367(1888):545-60. PubMed ID: 18990665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear elastic instability in channel flows at low Reynolds numbers.
    Pan L; Morozov A; Wagner C; Arratia PE
    Phys Rev Lett; 2013 Apr; 110(17):174502. PubMed ID: 23679736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aspects of linear and nonlinear instabilities leading to transition in pipe and channel flows.
    Cohen J; Philip J; Ben-Dov G
    Philos Trans A Math Phys Eng Sci; 2009 Feb; 367(1888):509-27. PubMed ID: 18990659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical Reynolds number for a natural transition to turbulence in pipe flows.
    Ben-Dov G; Cohen J
    Phys Rev Lett; 2007 Feb; 98(6):064503. PubMed ID: 17358948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and dynamics of low Reynolds number turbulent pipe flow.
    Duggleby A; Ball KS; Schwaenen M
    Philos Trans A Math Phys Eng Sci; 2009 Feb; 367(1888):473-88. PubMed ID: 18990657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimally amplified large-scale streaks and drag reduction in turbulent pipe flow.
    Willis AP; Hwang Y; Cossu C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036321. PubMed ID: 21230185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and theoretical progress in pipe flow transition.
    Willis AP; Peixinho J; Kerswell RR; Mullin T
    Philos Trans A Math Phys Eng Sci; 2008 Aug; 366(1876):2671-84. PubMed ID: 18487120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Turbulent flow in smooth and rough pipes.
    Allen JJ; Shockling MA; Kunkel GJ; Smits AJ
    Philos Trans A Math Phys Eng Sci; 2007 Mar; 365(1852):699-714. PubMed ID: 17244585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of plate permeability on nonlinear stability of the asymptotic suction boundary layer.
    Wedin H; Cherubini S; Bottaro A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013022. PubMed ID: 26274284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Viscoelastic Pipe Flow is Linearly Unstable.
    Garg P; Chaudhary I; Khalid M; Shankar V; Subramanian G
    Phys Rev Lett; 2018 Jul; 121(2):024502. PubMed ID: 30085736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Violation of the incompressibility of liquid by simple shear flow.
    Furukawa A; Tanaka H
    Nature; 2006 Sep; 443(7110):434-8. PubMed ID: 17006510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genesis of streamwise-localized solutions from globally periodic traveling waves in pipe flow.
    Chantry M; Willis AP; Kerswell RR
    Phys Rev Lett; 2014 Apr; 112(16):164501. PubMed ID: 24815652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single and two-phase flows of shear-thinning media in safety valves.
    Moncalvo D; Friedel L
    J Hazard Mater; 2009 Sep; 168(2-3):1521-6. PubMed ID: 19361922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological flow analysis in significant human coronary artery stenoses.
    Banerjee RK; Back LH; Back MR; Cho YI
    Biorheology; 2003; 40(4):451-76. PubMed ID: 12775911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis and computations of a non-local thin-film model for two-fluid shear driven flows.
    Papageorgiou DT; Tanveer S
    Proc Math Phys Eng Sci; 2019 Oct; 475(2230):20190367. PubMed ID: 31736648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.