BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 18990691)

  • 1. Siderophore-controlled iron assimilation in the enterobacterium Erwinia chrysanthemi: evidence for the involvement of bacterioferritin and the Suf iron-sulfur cluster assembly machinery.
    Expert D; Boughammoura A; Franza T
    J Biol Chem; 2008 Dec; 283(52):36564-72. PubMed ID: 18990691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential role of ferritins in iron metabolism and virulence of the plant-pathogenic bacterium Erwinia chrysanthemi 3937.
    Boughammoura A; Matzanke BF; Böttger L; Reverchon S; Lesuisse E; Expert D; Franza T
    J Bacteriol; 2008 Mar; 190(5):1518-30. PubMed ID: 18165304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biogenesis of Fe-S cluster by the bacterial Suf system: SufS and SufE form a new type of cysteine desulfurase.
    Loiseau L; Ollagnier-de-Choudens S; Nachin L; Fontecave M; Barras F
    J Biol Chem; 2003 Oct; 278(40):38352-9. PubMed ID: 12876288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chrysobactin-dependent iron acquisition in Erwinia chrysanthemi. Functional study of a homolog of the Escherichia coli ferric enterobactin esterase.
    Rauscher L; Expert D; Matzanke BF; Trautwein AX
    J Biol Chem; 2002 Jan; 277(4):2385-95. PubMed ID: 11694506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SoxR-dependent response to oxidative stress and virulence of Erwinia chrysanthemi: the key role of SufC, an orphan ABC ATPase.
    Nachin L; El Hassouni M; Loiseau L; Expert D; Barras F
    Mol Microbiol; 2001 Feb; 39(4):960-72. PubMed ID: 11251816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterioferritin: Structure, Dynamics, and Protein-Protein Interactions at Play in Iron Storage and Mobilization.
    Rivera M
    Acc Chem Res; 2017 Feb; 50(2):331-340. PubMed ID: 28177216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Erwinia chrysanthemi requires a second iron transport route dependent of the siderophore achromobactin for extracellular growth and plant infection.
    Franza T; Mahé B; Expert D
    Mol Microbiol; 2005 Jan; 55(1):261-75. PubMed ID: 15612933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial siderophores exert a subtle role in Arabidopsis during infection by manipulating the immune response and the iron status.
    Dellagi A; Segond D; Rigault M; Fagard M; Simon C; Saindrenan P; Expert D
    Plant Physiol; 2009 Aug; 150(4):1687-96. PubMed ID: 19448037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Erwinia chrysanthemi iron metabolism: the unexpected implication of the inner membrane platform within the type II secretion system.
    Douet V; Expert D; Barras F; Py B
    J Bacteriol; 2009 Feb; 191(3):795-804. PubMed ID: 18978048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neisseria gonorrhoeae bacterioferritin: structural heterogeneity, involvement in iron storage and protection against oxidative stress.
    Chen CY; Morse SA
    Microbiology (Reading); 1999 Oct; 145 ( Pt 10)():2967-75. PubMed ID: 10537219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling of iron assimilation and pectinolysis in Erwinia chrysanthemi 3937.
    Franza T; Michaud-Soret I; Piquerel P; Expert D
    Mol Plant Microbe Interact; 2002 Nov; 15(11):1181-91. PubMed ID: 12423024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two distinct ferritin-like molecules in Pseudomonas aeruginosa: the product of the bfrA gene is a bacterial ferritin (FtnA) and not a bacterioferritin (Bfr).
    Yao H; Jepkorir G; Lovell S; Nama PV; Weeratunga S; Battaile KP; Rivera M
    Biochemistry; 2011 Jun; 50(23):5236-48. PubMed ID: 21574546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential expression of two siderophore-dependent iron-acquisition pathways in Erwinia chrysanthemi 3937: characterization of a novel ferrisiderophore permease of the ABC transporter family.
    Mahé B; Masclaux C; Rauscher L; Enard C; Expert D
    Mol Microbiol; 1995 Oct; 18(1):33-43. PubMed ID: 8596459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron storage in bacteria.
    Andrews SC
    Adv Microb Physiol; 1998; 40():281-351. PubMed ID: 9889981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SufA from Erwinia chrysanthemi. Characterization of a scaffold protein required for iron-sulfur cluster assembly.
    Ollagnier-de Choudens S; Nachin L; Sanakis Y; Loiseau L; Barras F; Fontecave M
    J Biol Chem; 2003 May; 278(20):17993-8001. PubMed ID: 12637501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron(III) uptake and release by chrysobactin, a siderophore of the phytophatogenic bacterium Erwinia chrysanthemi.
    Tomisić V; Blanc S; Elhabiri M; Expert D; Albrecht-Gary AM
    Inorg Chem; 2008 Oct; 47(20):9419-30. PubMed ID: 18803373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The SufBCD protein complex is the scaffold for iron-sulfur cluster assembly in Thermus thermophiles HB8.
    Tian T; He H; Liu XQ
    Biochem Biophys Res Commun; 2014 Jan; 443(2):376-81. PubMed ID: 24333431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a tonB mutation in Erwinia chrysanthemi 3937: TonB(Ech) is a member of the enterobacterial TonB family.
    Enard C; Expert D
    Microbiology (Reading); 2000 Aug; 146 ( Pt 8)():2051-2058. PubMed ID: 10931909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SufD and SufC ATPase activity are required for iron acquisition during in vivo Fe-S cluster formation on SufB.
    Saini A; Mapolelo DT; Chahal HK; Johnson MK; Outten FW
    Biochemistry; 2010 Nov; 49(43):9402-12. PubMed ID: 20857974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ferritin mutants of Escherichia coli are iron deficient and growth impaired, and fur mutants are iron deficient.
    Abdul-Tehrani H; Hudson AJ; Chang YS; Timms AR; Hawkins C; Williams JM; Harrison PM; Guest JR; Andrews SC
    J Bacteriol; 1999 Mar; 181(5):1415-28. PubMed ID: 10049371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.