These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 18991086)

  • 1. Uniform partial dissolution of bone mineral by using fluoride and phosphate ions combination.
    DePaula CA; Pan Y; Guzelsu N
    Connect Tissue Res; 2008; 49(5):328-42. PubMed ID: 18991086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased ash contents and estimation of dissolution from chemical changes due to in-vitro fluoride treatments.
    Kotha SP; DePaula CA; Koike K; Pan Y; Ohno M; Abjornson C; Rangarajan S; Guzelsu N
    Connect Tissue Res; 2002; 43(1):8-21. PubMed ID: 12180270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Varying the mechanical properties of bone tissue by changing the amount of its structurally effective bone mineral content.
    Kotha SP; Walsh WR; Pan Y; Guzelsu N
    Biomed Mater Eng; 1998; 8(5-6):321-34. PubMed ID: 10081595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of ions and mineral-organic interfacial bonding on the compressive properties of cortical bone.
    Walsh WR; Guzelsu N
    Biomed Mater Eng; 1993; 3(2):75-84. PubMed ID: 8369729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Change in creep behavior of plexiform bone with phosphate ion treatment.
    Regimbal RL; DePaula CA; Guzelsu N
    Biomed Mater Eng; 2003; 13(1):11-25. PubMed ID: 12652019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluoride effects on bone crystals.
    Grynpas MD
    J Bone Miner Res; 1990 Mar; 5 Suppl 1():S169-75. PubMed ID: 2187325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of Citric or Hydrochloric Acid with Calcium Fluorapatite: Precipitation of Calcium Fluoride.
    Misra DN
    J Colloid Interface Sci; 1999 Dec; 220(2):387-391. PubMed ID: 10607457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High phosphate content significantly increases apatite formation of fluoride-containing bioactive glasses.
    Mneimne M; Hill RG; Bushby AJ; Brauer DS
    Acta Biomater; 2011 Apr; 7(4):1827-34. PubMed ID: 21115144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of mineral dissolution from bone specimens on the viscoelastic properties of cortical bone.
    Sasaki N; Nozoe T; Nishihara R; Fukui A
    J Biomech; 2008 Dec; 41(16):3511-4. PubMed ID: 18996531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current concept on the anticaries fluoride mechanism of the action.
    Rosin-Grget K; Lincir I
    Coll Antropol; 2001 Dec; 25(2):703-12. PubMed ID: 11811302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tensile behavior of cortical bone: dependence of organic matrix material properties on bone mineral content.
    Kotha SP; Guzelsu N
    J Biomech; 2007; 40(1):36-45. PubMed ID: 16434048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular interactions between zoledronic acid and bone: An in vitro Raman microspectroscopic study.
    Juillard A; Falgayrac G; Cortet B; Vieillard MH; Azaroual N; Hornez JC; Penel G
    Bone; 2010 Nov; 47(5):895-904. PubMed ID: 20656084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracellular post-translational modifications of collagen are major determinants of biomechanical properties of fetal bovine cortical bone.
    Garnero P; Borel O; Gineyts E; Duboeuf F; Solberg H; Bouxsein ML; Christiansen C; Delmas PD
    Bone; 2006 Mar; 38(3):300-9. PubMed ID: 16271523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Comparative analysis of bone mineral composition in human archeological material taken from different regions of Poland].
    Noceń I
    Ann Acad Med Stetin; 1999; 45():25-39. PubMed ID: 10909480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An in vitro model to test the contribution of advanced glycation end products to bone biomechanical properties.
    Viguet-Carrin S; Farlay D; Bala Y; Munoz F; Bouxsein ML; Delmas PD
    Bone; 2008 Jan; 42(1):139-49. PubMed ID: 17974517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of hydrazine deproteination on bone mineral phase: a critical view.
    Bertazzo S; Bertran CA
    J Inorg Biochem; 2008 Jan; 102(1):137-45. PubMed ID: 17850876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of fluorhydroxyapatite-derived fluoride on acid production by streptococci.
    Guha-Chowdhury N; Iwami Y; Yamada T; Pearce EI
    J Dent Res; 1995 Sep; 74(9):1618-24. PubMed ID: 7560426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Warfarin-induced impairment of cortical bone material quality and compensatory adaptation of cortical bone structure to mechanical stimuli.
    Sugiyama T; Takaki T; Sakanaka K; Sadamaru H; Mori K; Kato Y; Taguchi T; Saito T
    J Endocrinol; 2007 Jul; 194(1):213-22. PubMed ID: 17592035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enamel subsurface lesion remineralisation with casein phosphopeptide stabilised solutions of calcium, phosphate and fluoride.
    Cochrane NJ; Saranathan S; Cai F; Cross KJ; Reynolds EC
    Caries Res; 2008; 42(2):88-97. PubMed ID: 18204252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of microgravity on collagenase deproteinization and EDTA decalcification of bone fragments.
    Simske SJ; Luttges MW
    Microgravity Sci Technol; 1994 Sep; 7(3):266-9. PubMed ID: 11541486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.