These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 1899138)
1. Ribosomal RNA introns in archaea and evidence for RNA conformational changes associated with splicing. Kjems J; Garrett RA Proc Natl Acad Sci U S A; 1991 Jan; 88(2):439-43. PubMed ID: 1899138 [TBL] [Abstract][Full Text] [Related]
2. Novel splicing mechanism for the ribosomal RNA intron in the archaebacterium Desulfurococcus mobilis. Kjems J; Garrett RA Cell; 1988 Aug; 54(5):693-703. PubMed ID: 3136929 [TBL] [Abstract][Full Text] [Related]
3. Structural characteristics of the stable RNA introns of archaeal hyperthermophiles and their splicing junctions. Lykke-Andersen J; Garrett RA J Mol Biol; 1994 Nov; 243(5):846-55. PubMed ID: 7966305 [TBL] [Abstract][Full Text] [Related]
4. RNomics in Archaea reveals a further link between splicing of archaeal introns and rRNA processing. Tang TH; Rozhdestvensky TS; d'Orval BC; Bortolin ML; Huber H; Charpentier B; Branlant C; Bachellerie JP; Brosius J; Hüttenhofer A Nucleic Acids Res; 2002 Feb; 30(4):921-30. PubMed ID: 11842103 [TBL] [Abstract][Full Text] [Related]
5. Comparison of transfer RNA and ribosomal RNA intron splicing in the extreme thermophile and archaebacterium Desulfurococcus mobilis. Kjems J; Jensen J; Olesen T; Garrett RA Can J Microbiol; 1989 Jan; 35(1):210-4. PubMed ID: 2470485 [TBL] [Abstract][Full Text] [Related]
6. Protein-coding introns from the 23S rRNA-encoding gene form stable circles in the hyperthermophilic archaeon Pyrobaculum organotrophum. Dalgaard JZ; Garrett RA Gene; 1992 Nov; 121(1):103-10. PubMed ID: 1427083 [TBL] [Abstract][Full Text] [Related]
7. Comprehensive analysis of archaeal tRNA genes reveals rapid increase of tRNA introns in the order thermoproteales. Sugahara J; Kikuta K; Fujishima K; Yachie N; Tomita M; Kanai A Mol Biol Evol; 2008 Dec; 25(12):2709-16. PubMed ID: 18832079 [TBL] [Abstract][Full Text] [Related]
8. Archaeal introns: splicing, intercellular mobility and evolution. Lykke-Andersen J; Aagaard C; Semionenkov M; Garrett RA Trends Biochem Sci; 1997 Sep; 22(9):326-31. PubMed ID: 9301331 [TBL] [Abstract][Full Text] [Related]
9. Molecular characterization and postsplicing fate of three introns within the single rRNA operon of the hyperthermophilic archaeon Aeropyrum pernix K1. Nomura N; Sako Y; Uchida A J Bacteriol; 1998 Jul; 180(14):3635-43. PubMed ID: 9658008 [TBL] [Abstract][Full Text] [Related]
10. Comprehensive analysis of the pre-ribosomal RNA maturation pathway in a methanoarchaeon exposes the conserved circularization and linearization mode in archaea. Qi L; Li J; Jia J; Yue L; Dong X RNA Biol; 2020 Oct; 17(10):1427-1441. PubMed ID: 32449429 [TBL] [Abstract][Full Text] [Related]
11. Identification of BHB splicing motifs in intron-containing tRNAs from 18 archaea: evolutionary implications. Marck C; Grosjean H RNA; 2003 Dec; 9(12):1516-31. PubMed ID: 14624007 [TBL] [Abstract][Full Text] [Related]
12. Integration of the Tetrahymena group I intron into bacterial rRNA by reverse splicing in vivo. Roman J; Woodson SA Proc Natl Acad Sci U S A; 1998 Mar; 95(5):2134-9. PubMed ID: 9482851 [TBL] [Abstract][Full Text] [Related]
13. Splicing of intron-containing tRNATrp by the archaeon Haloferax volcanii occurs independent of mature tRNA structure. Armbruster DW; Daniels CJ J Biol Chem; 1997 Aug; 272(32):19758-62. PubMed ID: 9242634 [TBL] [Abstract][Full Text] [Related]
14. Intercellular mobility and homing of an archaeal rDNA intron confers a selective advantage over intron- cells of Sulfolobus acidocaldarius. Aagaard C; Dalgaard JZ; Garrett RA Proc Natl Acad Sci U S A; 1995 Dec; 92(26):12285-9. PubMed ID: 8618886 [TBL] [Abstract][Full Text] [Related]
15. In vitro synthesis of end-mature, intron-containing transfer RNAs. Reyes VM; Abelson JN Methods Enzymol; 1989; 180():63-9. PubMed ID: 2693910 [No Abstract] [Full Text] [Related]
16. In vivo facilitation of Tetrahymena group I intron splicing in Escherichia coli pre-ribosomal RNA. Zhang F; Ramsay ES; Woodson SA RNA; 1995 May; 1(3):284-92. PubMed ID: 7489500 [TBL] [Abstract][Full Text] [Related]
17. Active self-splicing group I introns in 23S rRNA genes of hyperthermophilic bacteria, derived from introns in eukaryotic organelles. Nesbø CL; Doolittle WF Proc Natl Acad Sci U S A; 2003 Sep; 100(19):10806-11. PubMed ID: 12947037 [TBL] [Abstract][Full Text] [Related]
18. The unusual 23S rRNA gene of Coxiella burnetii: two self-splicing group I introns flank a 34-base-pair exon, and one element lacks the canonical omegaG. Raghavan R; Miller SR; Hicks LD; Minnick MF J Bacteriol; 2007 Sep; 189(18):6572-9. PubMed ID: 17644584 [TBL] [Abstract][Full Text] [Related]
19. A site-specific endonuclease encoded by a typical archaeal intron. Dalgaard JZ; Garrett RA; Belfort M Proc Natl Acad Sci U S A; 1993 Jun; 90(12):5414-7. PubMed ID: 8390663 [TBL] [Abstract][Full Text] [Related]
20. Sequence specificity of in vivo reverse splicing of the Tetrahymena group I intron. Roman J; Rubin MN; Woodson SA RNA; 1999 Jan; 5(1):1-13. PubMed ID: 9917062 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]