These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
356 related articles for article (PubMed ID: 18991393)
1. Structural changes of Salinibacter sensory rhodopsin I upon formation of the K and M photointermediates. Suzuki D; Sudo Y; Furutani Y; Takahashi H; Homma M; Kandori H Biochemistry; 2008 Dec; 47(48):12750-9. PubMed ID: 18991393 [TBL] [Abstract][Full Text] [Related]
2. Spectroscopic studies of a sensory rhodopsin I homologue from the archaeon Haloarcula vallismortis. Yagasaki J; Suzuki D; Ihara K; Inoue K; Kikukawa T; Sakai M; Fujii M; Homma M; Kandori H; Sudo Y Biochemistry; 2010 Feb; 49(6):1183-90. PubMed ID: 20067303 [TBL] [Abstract][Full Text] [Related]
3. FTIR spectroscopy of the all-trans form of Anabaena sensory rhodopsin at 77 K: hydrogen bond of a water between the Schiff base and Asp75. Furutani Y; Kawanabe A; Jung KH; Kandori H Biochemistry; 2005 Sep; 44(37):12287-96. PubMed ID: 16156642 [TBL] [Abstract][Full Text] [Related]
4. Assignment of the hydrogen-out-of-plane and -in-plane vibrations of the retinal chromophore in the K intermediate of pharaonis phoborhodopsin. Furutani Y; Sudo Y; Wada A; Ito M; Shimono K; Kamo N; Kandori H Biochemistry; 2006 Oct; 45(39):11836-43. PubMed ID: 17002284 [TBL] [Abstract][Full Text] [Related]
5. Structural characteristics around the β-ionone ring of the retinal chromophore in Salinibacter sensory rhodopsin I. Irieda H; Reissig L; Kawanabe A; Homma M; Kandori H; Sudo Y Biochemistry; 2011 Jun; 50(22):4912-22. PubMed ID: 21545132 [TBL] [Abstract][Full Text] [Related]
6. FTIR study of the photoisomerization processes in the 13-cis and all-trans forms of Anabaena sensory rhodopsin at 77 K. Kawanabe A; Furutani Y; Jung KH; Kandori H Biochemistry; 2006 Apr; 45(14):4362-70. PubMed ID: 16584171 [TBL] [Abstract][Full Text] [Related]
7. Structural changes in bacteriorhodopsin following retinal photoisomerization from the 13-cis form. Mizuide N; Shibata M; Friedman N; Sheves M; Belenky M; Herzfeld J; Kandori H Biochemistry; 2006 Sep; 45(35):10674-81. PubMed ID: 16939219 [TBL] [Abstract][Full Text] [Related]
8. Characterization of a signaling complex composed of sensory rhodopsin I and its cognate transducer protein from the eubacterium Salinibacter ruber. Sudo Y; Okada A; Suzuki D; Inoue K; Irieda H; Sakai M; Fujii M; Furutani Y; Kandori H; Homma M Biochemistry; 2009 Oct; 48(42):10136-45. PubMed ID: 19778064 [TBL] [Abstract][Full Text] [Related]
9. FTIR spectroscopy of the K photointermediate of Neurospora rhodopsin: structural changes of the retinal, protein, and water molecules after photoisomerization. Furutani Y; Bezerra AG; Waschuk S; Sumii M; Brown LS; Kandori H Biochemistry; 2004 Aug; 43(30):9636-46. PubMed ID: 15274618 [TBL] [Abstract][Full Text] [Related]
10. Effects of chloride ion binding on the photochemical properties of salinibacter sensory rhodopsin I. Suzuki D; Furutani Y; Inoue K; Kikukawa T; Sakai M; Fujii M; Kandori H; Homma M; Sudo Y J Mol Biol; 2009 Sep; 392(1):48-62. PubMed ID: 19560470 [TBL] [Abstract][Full Text] [Related]
11. FTIR study of the L intermediate of Anabaena sensory rhodopsin: structural changes in the cytoplasmic region. Kawanabe A; Furutani Y; Yoon SR; Jung KH; Kandori H Biochemistry; 2008 Sep; 47(38):10033-40. PubMed ID: 18759456 [TBL] [Abstract][Full Text] [Related]
12. Hydrogen-bonding interaction of the protonated schiff base with halides in a chloride-pumping bacteriorhodopsin mutant. Shibata M; Ihara K; Kandori H Biochemistry; 2006 Sep; 45(35):10633-40. PubMed ID: 16939215 [TBL] [Abstract][Full Text] [Related]
13. Structural changes of sensory rhodopsin I and its transducer protein are dependent on the protonated state of Asp76. Furutani Y; Takahashi H; Sasaki J; Sudo Y; Spudich JL; Kandori H Biochemistry; 2008 Mar; 47(9):2875-83. PubMed ID: 18220358 [TBL] [Abstract][Full Text] [Related]
14. FTIR study of the retinal Schiff base and internal water molecules of proteorhodopsin. Ikeda D; Furutani Y; Kandori H Biochemistry; 2007 May; 46(18):5365-73. PubMed ID: 17428036 [TBL] [Abstract][Full Text] [Related]
15. Structural changes in the O-decay accelerated mutants of pharaonis phoborhodopsin. Sudo Y; Furutani Y; Iwamoto M; Kamo N; Kandori H Biochemistry; 2008 Mar; 47(9):2866-74. PubMed ID: 18247579 [TBL] [Abstract][Full Text] [Related]
16. Strongly hydrogen-bonded water molecule present near the retinal chromophore of Leptosphaeria rhodopsin, the bacteriorhodopsin-like proton pump from a eukaryote. Sumii M; Furutani Y; Waschuk SA; Brown LS; Kandori H Biochemistry; 2005 Nov; 44(46):15159-66. PubMed ID: 16285719 [TBL] [Abstract][Full Text] [Related]
17. Influence of halide binding on the hydrogen bonding network in the active site of Salinibacter sensory rhodopsin I. Reissig L; Iwata T; Kikukawa T; Demura M; Kamo N; Kandori H; Sudo Y Biochemistry; 2012 Nov; 51(44):8802-13. PubMed ID: 23062114 [TBL] [Abstract][Full Text] [Related]
18. Spectrally silent intermediates during the photochemical reactions of Salinibacter sensory rhodopsin I. Inoue K; Sudo Y; Homma M; Kandori H J Phys Chem B; 2011 Apr; 115(15):4500-8. PubMed ID: 21449587 [TBL] [Abstract][Full Text] [Related]
19. Halide binding by the D212N mutant of Bacteriorhodopsin affects hydrogen bonding of water in the active site. Shibata M; Yoshitsugu M; Mizuide N; Ihara K; Kandori H Biochemistry; 2007 Jun; 46(25):7525-35. PubMed ID: 17547422 [TBL] [Abstract][Full Text] [Related]
20. Structural changes in the Schiff base region of squid rhodopsin upon photoisomerization studied by low-temperature FTIR spectroscopy. Ota T; Furutani Y; Terakita A; Shichida Y; Kandori H Biochemistry; 2006 Mar; 45(9):2845-51. PubMed ID: 16503639 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]