BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 18991562)

  • 1. Calcium uptake in rat liver mitochondria accompanied by activation of ATP-dependent potassium channel.
    Akopova OV; Nosar VI; Mankovskaya IN; Sagach VF
    Biochemistry (Mosc); 2008 Oct; 73(10):1146-53. PubMed ID: 18991562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The effect of ATP-dependent K(+)-channel opener on the functional state and the opening of cyclosporine-sensitive pore in rat liver mitochondria].
    Akopova OV; Nosar' VI; Buryĭ VA; Kolchinskaia LI; Man'kovskaia IN; Sagach VF
    Ukr Biokhim Zh (1999); 2013; 85(3):38-51. PubMed ID: 23937047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of ATP-dependent K(+)-channel opener on K(+)-cycle and oxygen consumption in rat liver mitochondria.
    Akopova OV; Nosar VI; Bouryi VA; Mankovskaya IN; Sagach VF
    Biochemistry (Mosc); 2010 Sep; 75(9):1139-47. PubMed ID: 21077833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diazoxide affects mitochondrial bioenergetics by the opening of mKATP channel on submicromolar scale.
    Akopova O; Kolchinskaya L; Nosar V; Mankovska I; Sagach V
    BMC Mol Cell Biol; 2020 Apr; 21(1):31. PubMed ID: 32306897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The effect of ATP-dependent K(+)-channel opener on transmembrane potassium exchange and reactive oxygen species production upon the opening of mitochondrial pore].
    Akopova OV; Kolchinskaia LI; Nosar' VI; Buryĭ VA; Man'kovskaia IN; Sagach VF
    Ukr Biochem J; 2014; 86(2):26-40. PubMed ID: 24868909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The influence of ATP-dependent K(+)-channel diazoxide opener on the opening of mitochondrial permeability transition pore in rat liver mitochondria].
    Akopova OV
    Ukr Biokhim Zh (1999); 2011; 83(3):37-47. PubMed ID: 21888053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Estimation of ATP-dependent K(+)-channel contribution to potential-dependent potassium uptake in the rat brain mitochondria].
    Akopova OV; Nosar' VI; Kolchinskaia LI; Man'kovskaia IN; Malysheva MK; Sagach VF
    Ukr Biochem J; 2014; 86(1):21-8. PubMed ID: 24834715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased potassium conductance of brain mitochondria induces resistance to permeability transition by enhancing matrix volume.
    Hansson MJ; Morota S; Teilum M; Mattiasson G; Uchino H; Elmér E
    J Biol Chem; 2010 Jan; 285(1):741-50. PubMed ID: 19880514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of atp-dependent potassium uptake on mitochondrial functions under acute hypoxia.
    Akopova O; Nosar V; Gavenauskas B; Bratus L; Kolchinskaya L; Mankovska I; Sagach V
    J Bioenerg Biomembr; 2016 Feb; 48(1):67-75. PubMed ID: 26739597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Respiratory uncoupling by increased H(+) or K(+) flux is beneficial for heart mitochondrial turnover of reactive oxygen species but not for permeability transition.
    Morota S; Piel S; Hansson MJ
    BMC Cell Biol; 2013 Sep; 14():40. PubMed ID: 24053891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct effects of diazoxide on mitochondria in pancreatic B-cells and on isolated liver mitochondria.
    Grimmsmann T; Rustenbeck I
    Br J Pharmacol; 1998 Mar; 123(5):781-8. PubMed ID: 9535004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of potential-dependent potassium uptake on production of reactive oxygen species in rat brain mitochondria.
    Akopova OV; Kolchinskaya LI; Nosar VI; Bouryi VA; Mankovska IN; Sagach VF
    Biochemistry (Mosc); 2014 Jan; 79(1):44-53. PubMed ID: 24512663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of the rate of K(+) movement through potassium channels in isolated rat heart and liver mitochondria.
    Bednarczyk P; Barker GD; Halestrap AP
    Biochim Biophys Acta; 2008 Jun; 1777(6):540-8. PubMed ID: 18471430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondria-derived reactive oxygen species dilate cerebral arteries by activating Ca2+ sparks.
    Xi Q; Cheranov SY; Jaggar JH
    Circ Res; 2005 Aug; 97(4):354-62. PubMed ID: 16020754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of potential-dependent potassium uptake on calcium accumulation in rat brain mitochondria.
    Akopova OV; Kolchinskaya LI; Nosar VI; Bouryi VA; Mankovskaya IN; Sagach VF
    Biochemistry (Mosc); 2013 Jan; 78(1):80-90. PubMed ID: 23379563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium sequestering ability of mitochondria modulates influx of calcium through glutamate receptor channel.
    Kannurpatti SS; Joshi PG; Joshi NB
    Neurochem Res; 2000 Dec; 25(12):1527-36. PubMed ID: 11152381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of liver regeneration by adenosine triphosphate-sensitive K⁺ channel opener (diazoxide) after partial hepatectomy.
    Nakagawa Y; Yoshioka M; Abe Y; Uchinami H; Ohba T; Ono K; Yamamoto Y
    Transplantation; 2012 Jun; 93(11):1094-100. PubMed ID: 22466787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of K+-ATP-dependent channel in transport of monovalent thallium (Tl+) across the inner membrane of rat liver mitochondria.
    Nikitina ER; Glazunov VV
    Dokl Biochem Biophys; 2003; 392():244-6. PubMed ID: 15255194
    [No Abstract]   [Full Text] [Related]  

  • 19. [Effect of K-ATP channel opener-pinacidil on the liver mitochondria function in rats with different resistance to hypoxia during stress].
    Tkachenko HM; Kurhaliuk NM; Vovkanych LS
    Ukr Biokhim Zh (1999); 2004; 76(1):56-64. PubMed ID: 15909418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism of rat brain mitochondria. Studies on the potassium ion-stimulated oxidation of pyruvate.
    Nicklas WJ; Clark JB; Williamson JR
    Biochem J; 1971 Jun; 123(1):83-95. PubMed ID: 5128666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.